OpenCV-Python 图像的几何变换 | 十四
目标
- 学习将不同的几何变换应用到图像上,如平移、旋转、仿射变换等。
- 你会看到这些函数: cv.getPerspectiveTransform
变换
OpenCV提供了两个转换函数cv.warpAffine和cv.warpPerspective,您可以使用它们进行各种转换。cv.warpAffine采用2x3转换矩阵,而cv.warpPerspective采用3x3转换矩阵作为输入。
缩放
缩放只是调整图像的大小。为此,OpenCV带有一个函数cv.resize()。图像的大小可以手动指定,也可以指定缩放比例。也可使用不同的插值方法。首选的插值方法是cv.INTER_AREA用于缩小,cv.INTER_CUBIC(慢)和cv.INTER_LINEAR用于缩放。默认情况下,出于所有调整大小的目的,使用的插值方法为cv.INTER_LINEAR。您可以使用以下方法调整输入图像的大小:
import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)
#或者
height, width = img.shape[:2]
res = cv.resize(img,(2*width, 2*height), interpolation = cv.INTER_CUBIC)
平移
平移是物体位置的移动。如果您知道在(x,y)方向上的位移,则将其设为(txt_xtx,tyt_yty),你可以创建转换矩阵M\mathbf{M}M,如下所示:
M=[10tx01ty]
M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}
M=[1001txty]
您可以将其放入np.float32类型的Numpy数组中,并将其传递给cv.warpAffine函数。参见下面偏移为(100, 50)的示例:
import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg',0)
rows,cols = img.shape
M = np.float32([[1,0,100],[0,1,50]])
dst = cv.warpAffine(img,M,(cols,rows))
cv.imshow('img',dst)
cv.waitKey(0)
cv.destroyAllWindows()
警告
cv.warpAffine函数的第三个参数是输出图像的大小,其形式应为(width,height)
。记住width
=列数,height
=行数。
你将看到下面的结果:
旋转
图像旋转角度为θθθ是通过以下形式的变换矩阵实现的:
M=[cosθ−sinθsinθcosθ]
M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}
M=[cosθsinθ−sinθcosθ]
但是OpenCV提供了可缩放的旋转以及可调整的旋转中心,因此您可以在自己喜欢的任何位置旋转。修改后的变换矩阵为
[αβ(1−α)⋅center.x−β⋅center.y−βαβ⋅center.x(1−α)⋅center.y]
\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot center.x - \beta \cdot center.y \\ - \beta & \alpha & \beta \cdot center.x (1- \alpha ) \cdot center.y \end{bmatrix}
[α−ββα(1−α)⋅center.x−β⋅center.yβ⋅center.x(1−α)⋅center.y]
其中:
α=scale⋅cosθ,β=scale⋅sinθ
\begin{array}{l} \alpha = scale \cdot \cos \theta , \\ \beta = scale \cdot \sin \theta \end{array}
α=scale⋅cosθ,β=scale⋅sinθ
为了找到此转换矩阵,OpenCV提供了一个函数cv.getRotationMatrix2D。请检查以下示例,该示例将图像相对于中心旋转90度而没有任何缩放比例。
img = cv.imread('messi5.jpg',0)
rows,cols = img.shape
# cols-1 和 rows-1 是坐标限制
M = cv.getRotationMatrix2D(((cols-1)/2.0,(rows-1)/2.0),90,1)
dst = cv.warpAffine(img,M,(cols,rows))
查看结果:
仿射变换
在仿射变换中,原始图像中的所有平行线在输出图像中仍将平行。为了找到变换矩阵,我们需要输入图像中的三个点及其在输出图像中的对应位置。然后cv.getAffineTransform将创建一个2x3矩阵,该矩阵将传递给cv.warpAffine。
查看以下示例,并查看我选择的点(以绿色标记):
img = cv.imread('drawing.png')
rows,cols,ch = img.shape
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv.getAffineTransform(pts1,pts2)
dst = cv.warpAffine(img,M,(cols,rows))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
查看结果:
透视变换
对于透视变换,您需要3x3变换矩阵。即使在转换后,直线也将保持直线。要找到此变换矩阵,您需要在输入图像上有4个点,在输出图像上需要相应的点。在这四个点中,其中三个不应共线。然后可以通过函数cv.getPerspectiveTransform找到变换矩阵。然后将cv.warpPerspective应用于此3x3转换矩阵。
请参见下面的代码:
img = cv.imread('sudoku.png')
rows,cols,ch = img.shape
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv.getPerspectiveTransform(pts1,pts2)
dst = cv.warpPerspective(img,M,(300,300))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
结果:
其他资源
- “Computer Vision: Algorithms and Applications”, Richard Szeliski
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 图像的几何变换 | 十四的更多相关文章
- OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- Python学习笔记(十四)
Python学习笔记(十四): Json and Pickle模块 shelve模块 1. Json and Pickle模块 之前我们学习过用eval内置方法可以将一个字符串转成python对象,不 ...
- python自动华 (十四)
Python自动化 [第十四篇]:HTML介绍 本节内容: Html 概述 HTML文档 常用标签 2. CSS 概述 CSS选择器 CSS常用属性 1.HTML 1.1概述 HTML是英文Hyper ...
- 【图像处理】OpenCV+Python图像处理入门教程(四)几何变换
这篇随笔介绍使用OpenCV进行图像处理的第四章 几何变换. 4 几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 4.1 缩放 使用cv2. ...
- python自动化开发-[第十四天]-javascript(续)
今日概要: 1.数据类型 2.函数function 3.BOM 4.DOM 1.运算符 算术运算符: + - * / % ++ -- 比较运算符: > >= < <= != = ...
- opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...
- OpenCV开发笔记(七十四):OpenCV3.4.1+ffmpeg3.4.8交叉编译移植到海思平台Hi35xx平台
前言 移植opencv到海思平台,opencv支持对视频进行解码,需要对应的ffmpeg支持. Ffmpeg的移植 Ffmpeg的移植请参考之前的文章:<FFmpeg开发笔记(十): ...
- python运维开发(十四)----HTML基本操作
内容目录: HTML概述 head标签 body中常用标签 css选择器 css常用属性 HTML HTML概述 HTML是英文Hyper Text Mark-up Language(超文本标记语言) ...
- python自动化开发-[第二十四天]-高性能相关与初识scrapy
今日内容概要 1.高性能相关 2.scrapy初识 上节回顾: 1. Http协议 Http协议:GET / http1.1/r/n...../r/r/r/na=1 TCP协议:sendall(&qu ...
随机推荐
- 怎样解决使用feof()函数时出现的问题?
feof函数 昨天在做一个课程设计时,一个函数的功能是将文件中的数据一条条的读到链表中去.既然不确定有多少条数据,那只能借助feof()函数了,本来文件部分就没学好,也就知道这一个方法. ...
- sofa-bolt源码阅读(1)-服务端的启动
Bolt服务器的核心类是RpcServer,启动的时候调用父类AbstractRemotingServer的startup方法. com.alipay.remoting.AbstractRemotin ...
- 小程序开发技巧(三)-- 云开发时效数据刷新和存储 (access_token等)
小程序云开发时效数据刷新和存储 (access_token等) 1.问题描述 小程序中经常有需要进行OCR识别,或者使用外部api例如百度AI识别等接口,请求调用这些接口需要令牌,即一些具有时效性的数 ...
- 使用MySQL练习增删改查时因为版本问题出现连接错误
使用MySQL练习增删改查时出现连接错误,错误提示如下: 2020-02-19 19:53:51.088 ERROR 16328 --- [reate-249798694] com.alibaba.d ...
- Django中的session的使用
一.Session 的概念 cookie 是在浏览器端保存键值对数据,而 session 是在服务器端保存键值对数据 session 的使用依赖 cookie:在使用 Session 后,会在 Coo ...
- 02 JPA
JPA概述 JPA的全称是Java Persistence API, 即Java 持久化API,是SUN公司推出的一套基于ORM的规范,内部是由一系列的接口和抽象类构成. JPA通过JDK ...
- Simulink仿真入门到精通(六) Simulink模型保存为图片
6.1 截图保存方式 Ctrl+Alt+A 6.2 拷贝试图方式 Edit→Copy Current View to Clipboard 6.3 saveas函数 用于保存figure或者simuli ...
- kubeasz部署高可用kubernetes1.17.2 并实现traefik2.1.2部署
模板机操作 # cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) # uname -a //内核升级到4.4.X以后, 关于如何 ...
- JAVAEE学习day01
1.二进制和十进制之间的转换: 十进制转换成二进制: 除2取余,从下往上吧余数拼接 二进制转换十进制: 1 0 1 0 8 4 2 1 把有1位的十进制求和 2.JAVA语言跨平台的原理 java程序 ...
- ASP.net MVC 构建layui管理后台(构造基础仓储)<1>
本文章为ASP.net MVC 构建layui管理后台,第一篇. 使用EF+ado.net 实体数据模型模式进行底层的数据库连接. 在项目添加一个类库Model 在类库Model上添加一个ado.ne ...