第一个CNN代码,暂时对于CNN的BP还不熟悉。但是通过这个代码对于tensorflow的运行机制有了初步的理解

 '''
softmax classifier for mnist created on 2019.9.28
author: vince
'''
import math
import logging
import numpy
import random
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
from sklearn.metrics import accuracy_score def weight_bais_variable(shape):
init = tf.random.truncated_normal(shape = shape, stddev = 0.01);
return tf.Variable(init); def bais_variable(shape):
init = tf.constant(0.1, shape=shape);
return tf.Variable(init); def conv2d(x, w):
return tf.nn.conv2d(x, w, [1, 1, 1, 1], padding = "SAME"); def max_pool_2x2(x):
return tf.nn.max_pool2d(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME"); def cnn(x, rate):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1]); #first layer, conv & pool
with tf.name_scope('conv1'):
w_conv1 = weight_bais_variable([5, 5, 1, 32]);
b_conv1 = bais_variable([32]);
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1); #28 * 28 * 32
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1); #14 * 14 * 32 #second layer, conv & pool
with tf.name_scope('conv2'):
w_conv2 = weight_bais_variable([5, 5, 32, 64]);
b_conv2 = bais_variable([64]);
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2); #14 * 14 * 64
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2); #7 * 7 * 64 #first full connect layer, feature graph -> feature vector
with tf.name_scope('fc1'):
w_fc1 = weight_bais_variable([7 * 7 * 64, 1024]);
b_fc1 = bais_variable([1024]);
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]);
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1);
with tf.name_scope("dropout1"):
h_fc1_drop = tf.nn.dropout(h_fc1, rate); #second full connect layer,
with tf.name_scope('fc2'):
w_fc2 = weight_bais_variable([1024, 10]);
b_fc2 = bais_variable([10]);
#h_fc2 = tf.matmul(h_fc1_drop, w_fc2) + b_fc2;
h_fc2 = tf.matmul(h_fc1, w_fc2) + b_fc2;
return h_fc2; def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S'); mnist = read_data_sets('../data/MNIST',one_hot=True) # MNIST_data指的是存放数据的文件夹路径,one_hot=True 为采用one_hot的编码方式编码标签 x = tf.placeholder(tf.float32, [None, 784]);
y_real = tf.placeholder(tf.float32, [None, 10]);
rate = tf.placeholder(tf.float32); y_pre = cnn(x, rate); sess = tf.InteractiveSession();
sess.run(tf.global_variables_initializer()); loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y_pre, labels = y_real));
train_op = tf.train.GradientDescentOptimizer(0.5).minimize(loss); correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(y_real, 1));
prediction_op= tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
for _ in range(300):
batch_xs, batch_ys = mnist.train.next_batch(128);
sess.run(train_op, feed_dict = {x : batch_xs, y_real : batch_ys, rate: 0.5});
if _ % 10 == 0:
accuracy = sess.run(prediction_op, feed_dict = {x : mnist.test.images, y_real : mnist.test.labels, rate: 0.0 });
logging.info("%s : %s" % (_, accuracy)); if __name__ == "__main__":
main();

使用tensorflow实现cnn进行mnist识别的更多相关文章

  1. 使用tensorflow的softmax进行mnist识别

    tensorflow真是方便,看来深度学习需要怎么使用框架.如何建模- ''' softmax classifier for mnist created on 2019.9.28 author: vi ...

  2. Tensorflow搭建CNN实现验证码识别

    完整代码:GitHub 我的简书:Awesome_Tang的简书 整个项目代码分为三部分: Generrate_Captcha: 生成验证码图片(训练集,验证集和测试集): 读取图片数据和标签(标签即 ...

  3. 机器学习: Tensor Flow with CNN 做表情识别

    我们利用 TensorFlow 构造 CNN 做表情识别,我们用的是FER-2013 这个数据库, 这个数据库一共有 35887 张人脸图像,这里只是做一个简单到仿真实验,为了计算方便,我们用其中到 ...

  4. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  8. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  9. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

随机推荐

  1. python fake_useragent模块 user-agent的获取

    1. UserAgent 模块使用 from fake_useragent import UserAgent ua = UserAgent() # 实例化,实例化时需要联网但是网站不太稳定 print ...

  2. windows下用Python把pdf文件转化为图片

    依赖:PyMuPDF(pip install pymupdf) # -*- coding: utf-8 -*- """ 1.安装库 pip install pymupdf ...

  3. JUC常用同步工具类——CountDownLatch,CyclicBarrier,Semaphore

    在 JUC 下包含了一些常用的同步工具类,今天就来详细介绍一下,CountDownLatch,CyclicBarrier,Semaphore 的使用方法以及它们之间的区别. 一.CountDownLa ...

  4. 【线上测试之后的应用】基于MySQL+MHA+Haproxy构建高可用负载均衡数据库集群(详解)

    这里我们先介绍一下MHA是什么,其次就是它的应用与测试,同时为了大家呈现了数据备份案例,最后总结了使用情况以及注意事项和解决办法 一.MHA 概述 MHA(Master High Availabili ...

  5. 谈谈集合.Queue

    之前说到,Java中集合的主要作用就是装盛其他数据和实现常见的数据结构.所以当我们要用到"栈"."队列"."链表"和"数组&quo ...

  6. 获取View的快照

    //获取快照 - (UIView*)customSnapshotInView:(UIView*)inview { UIView *snapshot = [inview snapshotViewAfte ...

  7. 基于VR技术的输电线路巡检仿真系统

    基于VR技术,搭建电力输电仿真系统用于培训,提供用户沉浸式学习体验.交互式操作体验,VR设备能够提供沉浸式真实感的模拟场景,使得输电线路巡检内容视觉化,跨越了空间和时间的限制,有针对性的解决传统输电运 ...

  8. codeigniter框架的使用感受和注意事项

    codeigniter是一个轻量级的php的web框架,今年2月22日,正式发布了4.0版本.简称CI框架 先使用了CI的3.15版,基本上是不用安装,把框架文件放到web目录下,让后通过简单的配置, ...

  9. ElasticSearch 6.2.4 实践

    参考资料 ElasticSearch 官网 ElasticSearch,Kibana,Asp.net Core with docker 示例 阮一峰 ElasticSearch 基础概念 索引(ind ...

  10. Oracle根据实体类比对2个数据库结构差异(demo)

    源起 在公司做项目时 经常出现 实体结构和线上的数据结构以及公司开发库数据结构不匹配的问题 但是又不能直接把开发库导入到生产库因为生产库已经有实际数据了 所以弄了一个小工具 此处只做记录用 demo级 ...