import tensorflow as tf

INPUT_NODE = 784
OUTPUT_NODE = 10 IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10 CONV1_DEEP = 32
CONV1_SIZE = 5 CONV2_DEEP = 64
CONV2_SIZE = 5 FC_SIZE = 512 def inference(input_tensor, train, regularizer):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable(
"weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME") with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable(
"weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1)) fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.5) with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
logit = tf.matmul(fc1, fc2_weights) + fc2_biases return logit
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import LeNet5_infernece
import os
import numpy as np BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99 def train(mnist):
# 定义输出为4维矩阵的placeholder
x = tf.placeholder(tf.float32, [
BATCH_SIZE,
LeNet5_infernece.IMAGE_SIZE,
LeNet5_infernece.IMAGE_SIZE,
LeNet5_infernece.NUM_CHANNELS],
name='x-input')
y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = LeNet5_infernece.inference(x,False,regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE) reshaped_xs = np.reshape(xs, (
BATCH_SIZE,
LeNet5_infernece.IMAGE_SIZE,
LeNet5_infernece.IMAGE_SIZE,
LeNet5_infernece.NUM_CHANNELS))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys}) if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型的更多相关文章

  1. 吴裕雄--天生自然python Google深度学习框架:Tensorflow实现迁移学习

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  2. 吴裕雄--天生自然python Google深度学习框架:图像识别与卷积神经网络

  3. 吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄--天生自然python Google深度学习框架:深度学习与深层神经网络

  5. 吴裕雄--天生自然python Google深度学习框架:TensorFlow实现神经网络

    http://playground.tensorflow.org/

  6. 吴裕雄--天生自然python Google深度学习框架:Tensorflow基础应用

    import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], ...

  7. 吴裕雄--天生自然python Google深度学习框架:人工智能、深度学习与机器学习相互关系介绍

  8. 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:Bellman函数、贪心算法与增强性学习网络开发实践

    !pip install gym import random import numpy as np import matplotlib.pyplot as plt from keras.layers ...

  9. 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用TensorFlow和Keras开发高级自然语言处理系统——LSTM网络原理以及使用LSTM实现人机问答系统

    !mkdir '/content/gdrive/My Drive/conversation' ''' 将文本句子分解成单词,并构建词库 ''' path = '/content/gdrive/My D ...

随机推荐

  1. sping--事务

    事务的四大特性(ACID): 原子性(Atomicity) 一致性(Consistency) 隔离性(Isolation) 持久性(Durability) 事务属性: 1. propagation : ...

  2. 不要对md5file.read()计算md5值

    最近遇到的一个问题,我使用以下代码对备份文件计算MD5值: # md5file=open("%s" % outputpath, 'rb') # md5=hashlib.md5(md ...

  3. javascript实现抽奖程序

    昨天开年会的时候看到一个段子说唯品会年会抽奖,结果大奖都被写抽奖程序的部门得了,CTO现场review代码. 简单想了一下抽奖程序的实现,花了十几分钟写了一下,主要用到的知识有数组添加删除,以及ES5 ...

  4. 深入理解Canvas Scaler

    Canvas Scaler: 这是一个理解起来相当繁琐复杂的一个组件,但又是一个至关重要的组件,不彻底了解它,可以说对UGUI的布局和所谓的“自适应”就没有一个完整的认识. Canvas Scale指 ...

  5. POJ 2251:Dungeon Master

    Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20687   Accepted: 8004 D ...

  6. delphi 文本 记录 流式 读写文件

    unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...

  7. hook键盘钩子 带dll

    library Key; uses SysUtils, Classes, HookKey_Unit in 'HookKey_Unit.pas'; {$R *.res} exports HookOn,H ...

  8. mysql float 这个大坑

    以后高精度的数据不要用这个字段  今天同事反应 应该是17390.7的数据 结果展示17390.6992  找了半天问题在哪 后来决定先不管  手动现在数据库改数据 结果手动改也改不过来  于是能确定 ...

  9. blueimp,预览遮罩范围控制

    blueimg gallery github地址:https://github.com/blueimp/Gallery/blob/master/README.md 使用前提,引用css和js < ...

  10. 对CI框架中几个文件libraries

    对CI框架中几个文件libraries,helpers,hooks夹说明 来源:未知    时间:2014-10-20 11:37   阅读数:117   作者:xbdadmin [导读] 1.lib ...