struct streaming中的监听器StreamingQueryListener
在struct streaming提供了一个类,用来监听流的启动、停止、状态更新
StreamingQueryListener
实例化:StreamingQueryListener 后需要实现3个函数:
abstract class StreamingQueryListener {
import StreamingQueryListener._
/**
* Called when a query is started.
* @note This is called synchronously with
* [[org.apache.spark.sql.streaming.DataStreamWriter `DataStreamWriter.start()`]],
* that is, `onQueryStart` will be called on all listeners before
* `DataStreamWriter.start()` returns the corresponding [[StreamingQuery]]. Please
* don't block this method as it will block your query.
* @since 2.0.0
*/
def onQueryStarted(event: QueryStartedEvent): Unit
/**
* Called when there is some status update (ingestion rate updated, etc.)
*
* @note This method is asynchronous. The status in [[StreamingQuery]] will always be
* latest no matter when this method is called. Therefore, the status of [[StreamingQuery]]
* may be changed before/when you process the event. E.g., you may find [[StreamingQuery]]
* is terminated when you are processing `QueryProgressEvent`.
* @since 2.0.0
*/
def onQueryProgress(event: QueryProgressEvent): Unit
/**
* Called when a query is stopped, with or without error.
* @since 2.0.0
*/
def onQueryTerminated(event: QueryTerminatedEvent): Unit
}
onQueryStarted:结构化流启动的时候异步回调
onQueryProgress:查询过程中的状态发生更新时候的异步回调
onQueryTerminated:查询结束实时的异步回调
上面这些内容有什么作用?
一般在流处理中添加任务告警时候能用到。比如在onQueryStarted中判断是不是有满足告警的条件 , 如果有的话,就发送邮件告警或者钉钉告警灯
那么在告警信息中我们就可以根据其中的exception获取报错具体详情,然后一并发送到邮件中
@InterfaceStability.Evolving
class QueryTerminatedEvent private[sql](
val id: UUID,
val runId: UUID,
val exception: Option[String]) extends Event
最后,附上一个使用的小例子:
/**
* Created by angel
*/
object Test {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("IQL")
.master("local[4]")
.enableHiveSupport()
.getOrCreate()
spark.sparkContext.setLogLevel("WARN") // Save the code as demo-StreamingQueryManager.scala
// Start it using spark-shell
// $ ./bin/spark-shell -i demo-StreamingQueryManager.scala // Register a StreamingQueryListener to receive notifications about state changes of streaming queries
import org.apache.spark.sql.streaming.StreamingQueryListener
val myQueryListener = new StreamingQueryListener {
import org.apache.spark.sql.streaming.StreamingQueryListener._
def onQueryTerminated(event: QueryTerminatedEvent): Unit = {
println(s"Query ${event.id} terminated")
} def onQueryStarted(event: QueryStartedEvent): Unit = {
println(s"Query ${event.id} started")
}
def onQueryProgress(event: QueryProgressEvent): Unit = {
println(s"Query ${event.progress.name} process")
}
}
spark.streams.addListener(myQueryListener) import org.apache.spark.sql.streaming._
import scala.concurrent.duration._ // Start streaming queries // Start the first query
val q4s = spark.readStream.
format("rate").
load.
writeStream.
format("console").
trigger(Trigger.ProcessingTime(.seconds)).
option("truncate", false).
start // Start another query that is slightly slower
val q10s = spark.readStream.
format("rate").
load.
writeStream.
format("console").
trigger(Trigger.ProcessingTime(.seconds)).
option("truncate", false).
start // Both queries run concurrently
// You should see different outputs in the console
// q4s prints out 4 rows every batch and twice as often as q10s
// q10s prints out 10 rows every batch /*
-------------------------------------------
Batch: 7
-------------------------------------------
+-----------------------+-----+
|timestamp |value|
+-----------------------+-----+
|2017-10-27 13:44:07.462|21 |
|2017-10-27 13:44:08.462|22 |
|2017-10-27 13:44:09.462|23 |
|2017-10-27 13:44:10.462|24 |
+-----------------------+-----+ -------------------------------------------
Batch: 8
-------------------------------------------
+-----------------------+-----+
|timestamp |value|
+-----------------------+-----+
|2017-10-27 13:44:11.462|25 |
|2017-10-27 13:44:12.462|26 |
|2017-10-27 13:44:13.462|27 |
|2017-10-27 13:44:14.462|28 |
+-----------------------+-----+ -------------------------------------------
Batch: 2
-------------------------------------------
+-----------------------+-----+
|timestamp |value|
+-----------------------+-----+
|2017-10-27 13:44:09.847|6 |
|2017-10-27 13:44:10.847|7 |
|2017-10-27 13:44:11.847|8 |
|2017-10-27 13:44:12.847|9 |
|2017-10-27 13:44:13.847|10 |
|2017-10-27 13:44:14.847|11 |
|2017-10-27 13:44:15.847|12 |
|2017-10-27 13:44:16.847|13 |
|2017-10-27 13:44:17.847|14 |
|2017-10-27 13:44:18.847|15 |
+-----------------------+-----+
*/ // Stop q4s on a separate thread
// as we're about to block the current thread awaiting query termination
import java.util.concurrent.Executors
import java.util.concurrent.TimeUnit.SECONDS
def queryTerminator(query: StreamingQuery) = new Runnable {
def run = {
println(s"Stopping streaming query: ${query.id}")
query.stop
}
}
import java.util.concurrent.TimeUnit.SECONDS
// Stop the first query after 10 seconds
Executors.newSingleThreadScheduledExecutor.
scheduleWithFixedDelay(queryTerminator(q4s), , * , SECONDS)
// Stop the other query after 20 seconds
Executors.newSingleThreadScheduledExecutor.
scheduleWithFixedDelay(queryTerminator(q10s), , * , SECONDS) // Use StreamingQueryManager to wait for any query termination (either q1 or q2)
// the current thread will block indefinitely until either streaming query has finished
spark.streams.awaitAnyTermination // You are here only after either streaming query has finished
// Executing spark.streams.awaitAnyTermination again would return immediately // You should have received the QueryTerminatedEvent for the query termination // reset the last terminated streaming query
spark.streams.resetTerminated // You know at least one query has terminated // Wait for the other query to terminate
spark.streams.awaitAnyTermination assert(spark.streams.active.isEmpty) println("The demo went all fine. Exiting...") // leave spark-shell
System.exit()
}
}
小例子
struct streaming中的监听器StreamingQueryListener的更多相关文章
- spark streaming中使用checkpoint
从官方的Programming Guides中看到的 我理解streaming中的checkpoint有两种,一种指的是metadata的checkpoint,用于恢复你的streaming:一种是r ...
- Spark Streaming中向flume拉取数据
在这里看到的解决方法 https://issues.apache.org/jira/browse/SPARK-1729 请是个人理解,有问题请大家留言. 其实本身flume是不支持像KAFKA一样的发 ...
- Spark Streaming中的操作函数分析
根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...
- spark streaming中维护kafka偏移量到外部介质
spark streaming中维护kafka偏移量到外部介质 以kafka偏移量维护到redis为例. redis存储格式 使用的数据结构为string,其中key为topic:partition, ...
- 在web.xml中配置监听器来控制ioc容器生命周期
5.整合关键-在web.xml中配置监听器来控制ioc容器生命周期 原因: 1.配置的组件太多,需保障单实例 2.项目停止后,ioc容器也需要关掉,降低对内存资源的占用. 项目启动创建容器,项目停止销 ...
- 在Java Web程序中使用监听器可以通过以下两种方法
之前学习了很多涉及servlet的内容,本小结我们说一下监听器,说起监听器,编过桌面程序和手机App的都不陌生,常见的套路都是拖一个控件,然后给它绑定一个监听器,即可以对该对象的事件进行监听以便发生响 ...
- Button 在布局文件中定义监听器,文字阴影,自定义图片,代码绘制样式,添加音效的方法
1.Button自己在xml文件中绑定监听器 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/andro ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十六)Structured Streaming中ForeachSink的用法
Structured Streaming默认支持的sink类型有File sink,Foreach sink,Console sink,Memory sink. ForeachWriter实现: 以写 ...
- Spark Streaming中的操作函数讲解
Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...
随机推荐
- 作业7:常用java命令(一)
一.Javac(java compiler) 1.功能:javac是一种前端编译器,负责将源代码转换为字节码. 2.例子 (1)代码 public class TestJavac { static c ...
- 实现Banner广告图片轮换
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 日历控件datetimepicker(IE11)
1.安装 smalot.bootstrap-datetimepicker 2.引用 bootstrap.css bootstrap-datetimepicker.min.css jquery-1.10 ...
- SQL SERVER中Datetime时间的范围与.net的DateTime对象的区别
对于编写.net程序中我们一般写默认的时间,我们会自动创建一个new DateTime()对象.但与SQL SERVER连用我们就会出现一个时间范围的问题. 今天我就记录一下该时间问题. 我们创建的n ...
- Json-server在Vue 2.0中使用--build文件中没有dev-server文件
跟大佬的视频使用json-server模拟后台数据调用,发现build文件中并没有dev-server.js. 新版的vue-cli取消了dev-server.js和dev-client.js 改 ...
- Nginx作为静态资源web服务之缓存原理
Nginx作为静态资源web服务之缓存原理 大致理一下http浏览器缓存原理: 浏览器第一次请求服务器,此时浏览器肯定没有缓存,则直接调用服务器端,服务器在返回的信息的信息头中添加 ETag和Last ...
- vue项目使用qrcodejs2生成二维码
最近写项目遇到一个需求,根据后台给的地址生成二维码,在网上找了下,qrcodejs2使用还是比较多,试了下也能实现需求,就整理下使用方法,方便以后使用 1. 安装包 cnpm i qrcodejs ...
- Delphi MSComm控件的错误消息
- Linux工具之top
top命令详解: 第一行:10:01:23----当前系统时间 126days,14:29------系统已经运行了126天14小时29分钟(在这期间没有重启过) 2users------当前 ...
- 5.Shell 流程控制语句
1.流程控制语句 通过if.for.while.case这4种流程控制语句来学习编写难度更大.功能更强的Shell脚本 4.3.1 if条件测试语句: if条件测试语句可以让脚本根据实际情况自动执行相 ...