最小生成树之Prim Kruskal算法(转)
最小生成树
Prim算法:
- //Prim
- struct edge{
- int to,len,next;
- }e[maxm];
- int box[maxn],cnt,used[maxn];
- void init(int n){
- for(int i=0;i<=n;i++)box[i]=-1;
- cnt=0;
- }
- void add(int from,int to,int len){
- e[cnt].to=to;
- e[cnt].len=len;
- e[cnt].next=box[from];
- box[from]=cnt++;
- }
- struct node{
- int v,len;
- node(){}
- node(int x,int y):v(x),len(y){}
- bool operator<(const node &x)const{
- return len>x.len;
- }
- };
- priority_queue<node> pq;
- int Prim(int n,int m){
- memset(used,0,sizeof(used));//初始化所有点,设状态为unseen
- int num=0,sum=0,now=1;
- do{
- used[now]=1;
- for(int t=box[now];t+1;t=e[t].next){
- int v=e[t].to,len=e[t].len;
- if(!used[v])pq.push(node(v,len));
- }
- while(!pq.empty()){
- node tmp=pq.top();pq.pop();
- int v=tmp.v,len=tmp.len;
- if(used[v])continue;
- now=v;
- sum+=len;
- break;
- }
- num++;
- }while(num<n);
- return sum;
- }
//Prim
struct edge{
int to,len,next;
}e[maxm];
int box[maxn],cnt,used[maxn];
void init(int n){
for(int i=0;i<=n;i++)box[i]=-1;
cnt=0;
}
void add(int from,int to,int len){
e[cnt].to=to;
e[cnt].len=len;
e[cnt].next=box[from];
box[from]=cnt++;
}
struct node{
int v,len;
node(){}
node(int x,int y):v(x),len(y){}
bool operator<(const node &x)const{
return len>x.len;
}
};
priority_queue<node> pq;
int Prim(int n,int m){
memset(used,0,sizeof(used));//初始化所有点,设状态为unseen
int num=0,sum=0,now=1;
do{
used[now]=1;
for(int t=box[now];t+1;t=e[t].next){
int v=e[t].to,len=e[t].len;
if(!used[v])pq.push(node(v,len));
}
while(!pq.empty()){
node tmp=pq.top();pq.pop();
int v=tmp.v,len=tmp.len;
if(used[v])continue;
now=v;
sum+=len;
break;
}
num++;
}while(num<n);
return sum;
}
Kruskal算法:
- #define maxn 110
- #define maxm 10010
- using namespace std;
- int uf[maxn];
- struct edge{
- int u,v,len;
- }e[maxm];
- bool cmp(const edge &x,const edge &y){
- return x.len<y.len;
- }
- void init(int n){//初始化并查集
- for(int i=0;i<=n;i++)uf[i]=i;
- }
- int find(int x){
- if(x==uf[x])return x;
- return uf[x]=find(uf[x]);
- }
- int Union(int x,int y){//合并两个集合(如果x,y在同一集合,返回0,否则返回1)
- x=find(x),y=find(y);
- if(x!=y){
- uf[x]=y;
- return 1;
- }
- return 0;
- }
- int Kruskal(int n,int m){//n个点,m条边
- sort(e,e+m,cmp);//排序
- int sum=0;//最小生成树的权值和
- for(int i=0;i<m;i++){//从小到大枚举边
- int u=e[i].u,v=e[i].v,len=e[i].len;
- sum+=len*Union(u,v);
- }
- return sum;//返回权值和
- }
#define maxn 110
#define maxm 10010
using namespace std;
int uf[maxn];
struct edge{
int u,v,len;
}e[maxm];
bool cmp(const edge &x,const edge &y){
return x.len<y.len;
}
void init(int n){//初始化并查集
for(int i=0;i<=n;i++)uf[i]=i;
}
int find(int x){
if(x==uf[x])return x;
return uf[x]=find(uf[x]);
}
int Union(int x,int y){//合并两个集合(如果x,y在同一集合,返回0,否则返回1)
x=find(x),y=find(y);
if(x!=y){
uf[x]=y;
return 1;
}
return 0;
}
int Kruskal(int n,int m){//n个点,m条边
sort(e,e+m,cmp);//排序
int sum=0;//最小生成树的权值和
for(int i=0;i<m;i++){//从小到大枚举边
int u=e[i].u,v=e[i].v,len=e[i].len;
sum+=len*Union(u,v);
}
return sum;//返回权值和
}
最小生成树之Prim Kruskal算法(转)的更多相关文章
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树(II)与Kruskal算法
为防止网页加载过慢,故分两章.上接https://www.cnblogs.com/Uninstalllingyi/p/10479470.html Kruskal算法——将森林合并成树 玩过瘟疫公司吗… ...
- 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...
- 最小生成树求法 Prim + Kruskal
prim算法的思路 和dijkstra是一样的 每次选取一个最近的点 然后去向新的节点扩张 注意这里的扩张 不再是 以前求最短路时候的到新的节点的最短距离 而是因为要生成一棵树 所以是要连一根最短的连 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 数据结构之 图论---最小生成树(prim + kruskal)
图结构练习——最小生成树 Time Limit: 1000MS Memory limit: 65536K 题目描述 有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的.现在我们想知 ...
- 图解最小生成树 - 克鲁斯卡尔(Kruskal)算法
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树 ...
- 最小生成树——Prim算法和Kruskal算法
洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...
随机推荐
- Gitee使用方法
原文链接:https://www.cnblogs.com/yiven/p/8465054.html 1.创建仓库: a.创建远程仓库 登入Gitee后,点击头像旁边的"+"加号-- ...
- python3中的heapq模块使用
heapq-堆排序算法 heapq实现了一个适合与Python的列表一起使用的最小堆排序算法. 二叉树 树中每个节点至多有两个子节点 满二叉树 树中除了叶子节点,每个节点都有两个子节点 什么是完全二叉 ...
- C# async await and state machine
Async Await and the Generated StateMachine https://www.codeproject.com/Articles/535635/Async-Await-a ...
- JS字符串转换为JSON的方法
1.jQuery插件支持的转换方式: 示例: $.parseJSON( jsonstr ); //jQuery.parseJSON(jsonstr),可以将json字符串转换成json对象 2.浏览 ...
- Selenium 2自动化测试实战29(组织单元测试用例和discover更多测试用例)
一.组织单元测试用例 看看unittest单元测试框架是如何扩展和组织新增的测试用例以之前的calculator.py文件为例,为其扩展sub()方法,用来计算两个数相减的结果. #coding:ut ...
- Windows 2012 英文版系统安装中文语言包及时间格式设置
1.安装中文语言包:在运行窗口中输入"LPKSetup.exe",选择中文语言包安装.--------------------------------------------- 2 ...
- (“(null)” is of a model that is not supported by this version of Xcode. Please...)
真机测试遇到以下问题: (还以为手机不支持Xcode的版本呢) 解决方法: 发现只要将XCode重启后就可以真机运行了,碰见这个问题的朋友可以试下,我反正是被坑了半小时...
- charles破解https请求
当你的app包从http升级到https的时候,是不是忽然间发现你的请求抓不到了呢?别担心,只是因为你们的app加密升级了,但是我们还是可以正常破解的.接下来直接谈破解步骤啦: 1:首先打开charl ...
- HNU_团队项目_Android和数据库对接出现问题总结
1. 问题说明:Android发来的数据JSON格式不对,Time和Date的位置相反 出现原因:Android的JSON数据组装时顺序不对(可能) 2.问题说明:Android发来的数据无法插入到数 ...
- selenium+java+eclipse web项目自动化测试环境搭建
一.java的安装与环境配置 1.下载JDK(Java Development Kit),下载地址 www.oracle.com 2.安装jdk(傻瓜式安装) 3.安装完成后,配置环境变量,步骤: ( ...