MATLAB分类与预测算法函数
1、glmfit()
功能:构建一个广义线性回归模型。
使用格式:b=glmfit(X,y,distr),根据属性数据X以及每个记录对应的类别数据y构建一个线性回归模型,distr可取值为:binomial、gamma、inverse gaussian、normal(默认值)和poisson,分别代表不同类型的回归模型。
2、patternnet()
功能:构建一个模式识别神经网络。
模式识别神经网络是一个前馈神经网络,通过对已知含有标签的数据进行训练得到神经网络模型,从而可以对新的不含标签的数据进行分类。用于输入的标签数据需要进行特殊编码,即一个类别使用一个向量进行表示,比如一共有3个类别,那么类别1可以编码为[1,0,0],类别3可以编码为[0,0,1]。
使用格式:net=patternnet(hiddenSizes,trainFcn,performFcn),构建一个隐含层神经元个数为hiddenSizes,模型函数为trainFcn,性能函数为performFcn的神经网络net。
主要的模型函数有:
Trainscg:使用标度共梯度算法更新权值和偏移值
Trainlm:使用LM算法更新权值和偏移值
Trainbr:使用LM算法更新权值和偏移值(贝叶斯正则化)
Trainrp:根据弹反向传播算法更新权值和偏移值
3、fitctree()
功能:构建一个二叉分类树,每个分支节点根据输人数据进行确定。
使用格式:tree=fitctree(x,y),根据数据的属性数据x以及每个记录对应的类别数据y构建一个二叉分类树tree。
4、fitensemble()
功能:创建一个模型,该函数可以根据不同的参数构建不同的模型,可以用于分类或者回归。
使用格式:Ensemble=fitensemble(x,y,Method,NLearn,Learners),根据输入属性数据x以及每个记录对应的y值(如y是离散型变量,则模型为分类模型;如y是连续型变量,则模型为回归模型)、Method(用于构建的模型名称)、NLearn(模型学习的循环次数)以及Learners值(弱学习算法名称,有三个值,分别是“Discriminant”“KNN”“Tree”)构建一个分类或者回归模型。该模型的性能依赖于弱学习算法的参数设置,如果这些参数设置不合理,将导致较差的性能。
常用的method:
①参数值:AdaBoostM1
适用范围:适用于二类别分类
②参数值:LogitBoost
适用范围:适用于二类别分类
③参数值:GentleBoost
适用范围:适用于二类别分类
④参数值:AdaBoostM2
适用范围:适用于三类别分类及以上
使用fitensemble函数构建三个模型,对比三个模型的误差。
rng(,'twister')
Xtrain=rand(,);
Ytrain=sum(Xtrain(:,:),)>2.5;
idx=randsample(,);
Ytrain(idx)=~Ytrain(idx);
%构建一个AdaBoostM1模型
ada=fitensemble(Xtrain,Ytrain,'AdaBoostM1',,'Tree','LearnRate',0.1);
%构建一个RobustBoost模型,设置误差阈值为0.
rb1=fitensemble(Xtrain,Ytrain,'RobustBoost',,'Tree','RobustErrorGoal',0.15,'RobustMaxMargin',);
%构建一个RobustBoost模型,设置误差阈值为0.
rb2=fitensemble(Xtrain,Ytrain,'RobustBoost',,'Tree','RobustErrorGoal',0.01)
figure
plot(resubLoss(rb1,'Mode','Cumulative'))
hold on
plot(resubLoss(rb2,'Mode','Cumulative'),'r--');
plot(resubLoss(ada,'Mode','Cumulative'),'g.');
hold off
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('ErrorGoal=0.15','ErrorGoal=0.01','AdaBoostM1','Location','NE');

5、fitNaiveBayes()
功能:创建一个朴素贝叶斯分类器。
使用格式:NBModel=fitNaiveBayes(x,y),根据输入数据x以及每个x对应的类别号y(如果y为NaN或者空字符串‘’或者unidefined,都会被视为缺失值,朴素贝叶斯分类器会直接忽略这些值对应的x)构建一个朴素贝叶斯分类器。
MATLAB分类与预测算法函数的更多相关文章
- 详细BP神经网络预测算法及实现过程实例
1.具体应用实例.根据表2,预测序号15的跳高成绩. 表2 国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() ...
- 数据挖掘入门系列教程(二)之分类问题OneR算法
数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:G ...
- 【彩票】彩票预测算法(一):离散型马尔可夫链模型C#实现
前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱 ...
- matlab 对图像操作的函数概览
转自博客:http://blog.163.com/fei_lai_feng/blog/static/9289962200991713415422/ 一. 读写图像文件 1. imread imread ...
- 【年终分享】彩票数据预测算法(一):离散型马尔可夫链模型实现【附C#代码】
原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. ...
- 基于MATLAB的腐蚀膨胀算法实现
本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像 ...
- MATLAB粒子群优化算法(PSO)
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optim ...
- surprise库官方文档分析(二):使用预测算法
1.使用预测算法 Surprise提供了一堆内置算法.所有算法都派生自AlgoBase基类,其中实现了一些关键方法(例如predict,fit和test).可以在prediction_algorith ...
- 【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(V ...
随机推荐
- idea插件开发
用过的group ProjectViewPopupMenu 项目.目录的右键弹出菜单 EditorPopupMenu 编辑器里面的右键弹出菜单 调出右键菜单的关键字 show context menu
- POJ-2065-SETI(高斯消元)
链接: https://vjudge.net/problem/POJ-2065 题意: For some years, quite a lot of work has been put into li ...
- 40、扩展原理-BeanDefinitionRegistryPostProcessor
40.扩展原理-BeanDefinitionRegistryPostProcessor BeanDefinitionRegistryPostProcessor extends BeanFactoryP ...
- HTML 004 属性
HTML 属性 属性是 HTML 元素提供的附加信息. HTML 属性 HTML 元素可以设置属性 属性可以在元素中添加附加信息 属性一般描述于开始标签 属性总是以名称/值对的形式出现,比如:name ...
- Linux core dump 诊断进程奔溃退出
最近项目中出现了一个问题,服务器端程序会突然崩溃退出,我们采取了coredump技术以找到崩溃原因,即确定进程退出时正在执行的函数是哪个,其状态如何. 如果系统开启了core ...
- Codeforces Round #583
目录 Contest Info Solutions A. Optimal Currency Exchange B. Badges C. Bad Sequence D. Treasure Island ...
- AGC037C Numbers on a Circle【构造】
从后往前做,每次将\(B_i\)减去相邻两个数,注意如果最大的数没有变成初始状态,那么肯定要减,否则相邻两边的就减不了,所以用堆维护.根据辗转相除的复杂度,\(O(n\log^2 n)\). #inc ...
- linux red hat下安装tomcat的过程
linux下安装tomcat <-----------1.0----------------->:首先需要先去tomcat官网下载linux版本的tomcat的安装包; 我在官网上下载的 ...
- DCL:管理用户
1. 管理用户 (1) 查询用户 MySQL把用户的数据存放在 "mysql" 数据库的 "user" 表中. SELECT * FROM user; (2) ...
- 系统调优:如何解决系统报错too many open files
一.检查系统版本是否手工升级 关于lsb_release -a和/etc/issue显示的发行版本号不同,原因只有一个:系统内核手动升级了 对于高并发高http连接的应用程序例如www或Java,会遇 ...