MMAI 2015 FINAL PROJECT

 
To Know Where We Are: Positioning-based Photo Retrieval
 
2015/12/16 Update
To Know Where We Are: Positioning-based Photo Retrieval
Input: query photo
Return: other photos taken in the same position with different direction.
Method: use training photos collected from Internet or somewhere else to bulit a 3D model, perform 2D-3D matching when the query photo comes. As a result we get the position where the query photo was taken, then we use the position to final all photos taken in the same position or those was taken very close to this position ------- A new concept of image retrieval.
Topic 1    Photo Tourism In Campus (existing)
Use an amout of photos to built a campus model in 3D, and enable the guest to interactively move about the 3D space by seamlessly transitioning between photographs.

Method: 
Snavely, et al. "Photo tourism: exploring photo collections in 3D." ACM transactions on
graphics, 2006.
Topic 2    Best Shooting Point Seeking
Use an extension of the above work to find the best position to take a photo in a scene. This could be achieved by finding the viewpoints-densest area in the 3D model.
Topic 3    Photo-based Positioning
An extension of the above work. By using our own photo to quey the 3D model in a feature-based method, we could find where we are as well as get the photos taken near our current position.
Method:
Sattler, et al. "Fast image-based localization using direct 2D-to-3D matching." ICCV 2011.
Topic 4 CBIR System based on pretrained model feature extraction
After HW2, I have tried features extracted by pretrained model of GoogleNet. It turned out that such features was effective and thus led to more than 80% presicion(MAP) on our database. 
 

Positioning-Based Photo Retrieval的更多相关文章

  1. 基于内容的图片检索CBIR(Content Based Image Retrieval)简介

    传统的图像检索过程,先通过人工对图像进行文字标注,再利用关键字来检索图像,这种依据图像描述的字符匹配程度提供检索结果的方法,简称“以字找图”,既耗时又主观多义.基于内容的图像检索客服“以字找图”方式的 ...

  2. Bag of word based image retrieval

    主要参考维基百科Bag of Word 在DLP领域里,bow(bag of word)是一个稀疏的向量,向量的每个元素记录词的出现次数,相当于对每篇文章都关于词典做词的直方图统计.同样的道理用在co ...

  3. 第十讲_图像检索 Image Retrieval

    第十讲_图像检索 Image Retrieval 刚要 主要是图像预处理和特征提取+相似度计算 相似颜色检索 算法结构 颜色特征提取:统计图片的颜色成分 颜色特征相似度计算 色差距离 发展:欧式距离- ...

  4. 【Paper Reading】Deep Supervised Hashing for fast Image Retrieval

    what has been done: This paper proposed a novel Deep Supervised Hashing method to learn a compact si ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  7. A simple test

        博士生课程报告       视觉信息检索技术                 博 士 生:施 智 平 指导老师:史忠植 研究员       中国科学院计算技术研究所   2005年1月   目 ...

  8. Needle in a haystack: efficient storage of billions of photos 【转】

    转自09年的blog,因为facebook在国内无法访问,故此摘录. The Photos application is one of Facebook’s most popular features ...

  9. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

随机推荐

  1. repoquery详解——linux查看包依赖关系的神器

    repoquery是yum扩展工具包yum-utils中的一个工具,所有如果你没有repoquery命令的话,可以先 sudo yum install yum-utils 安装yum-utils包.是 ...

  2. linux安装PHP加速器eAccelerator

    感慨下:做前端开发不少日子了,在前公司也使用过一段时间linux系统,对apache配置比较熟悉,可是对nginx配置还是不熟悉,毕竟自己是做前端开发的,大后端的事情还是比较排斥,以后多练习.前些日子 ...

  3. PHP中break及continue两个流程控制指令解析

    <?php $arr = array( 'a' => '0a0', 'b' => '0b0', 'c' => '0c0', 'd' => '0d0', 'e' => ...

  4. POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  5. js 标签属性与导航

    导航标签的方法:  一 , 全局导航: 1.通过by id导航 <!DOCTYPE html><html lang="en"><head> &l ...

  6. spring 依赖注入总结--为什么官方推荐构造器注入

    一 公司小伙伴使用了构造器注入,说是spring的官方推荐.但是,我问了三个问题,他都答不出来,感觉能写篇博文. 官方为什么推荐构造器注入? 构造器注入和属性注入的区别是啥? 你知道有几种注入方式吗? ...

  7. sqlserver2008 调试存储过程

    1.创建所需要调试的存储过程,并执行一下,也就是保存好 ,我要演示的存储过程名是 “usp_Passport_GetNewDepositary” 2.找到存储过程,右键“执行存储过程”,会弹出如下的界 ...

  8. jQuery前端数据通用验证库,解放你的双手

    这个简易的验证库,应该能完成90%的基本验证,包括失去焦点时的验证,以及点击提交按钮时的验证.后端的那我就无能为办了,只能是谁用就谁自个儿去写了:). 先上一段调用的代码吧,JS代码说少也不少了,就不 ...

  9. CSS气泡

    气泡状文本框,是一种很生动的网页设计手段. 它可以用来表示用户的发言. 也可以用来作为特定信息的提示符. DVD租借网站Netflix,还用它显示碟片的详细信息. ================== ...

  10. Hashtable元素的删除

    2中方法 Remove(); Clear(); static void Main(string[] args) { Hashtable ht = new Hashtable(); ht.Add(1,& ...