bzoj 3027 [Ceoi2004]Sweet——生成函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3027
化式子到 ( \mul_{i=1}^{n}(1-x^(m[i]+1)) ) / (1-x)^n 之后就不会了。
其实把分子拿出来后的部分可以展开成一个式子,用组合意义可知 k 次项系数是 C( n-1+k,n-1 ) 。
分子的那部分可以暴搜 2^n 种可能的项!一个项 k * x^y 对答案的贡献就是 k*( \sum_{i=L-y}^{R-y}C(n-1+i,n-1) );考虑完这 2^n 种情况对答案的贡献后答案就算好了。
组合数一列的求和可以是那个右下角位置的值。
模数可能让组合数不能除,但可以把要除的 n! 乘进模数里,即 % (mod*n!) ,最后就可以把答案除以 n! 再输出了。
注意负数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=;
int n,m,w[N],L,R;
ll mod,ans;
void upd(ll &x){x>=mod?x-=mod:;}
ll calc(int k)
{
ll ret=;
for(int i=k+;i<=k+n;i++)
ret=ret*i%mod;
return ret;
}
void dfs(int cr,int xs,int cs)
{
if(cs>R)return;
if(cr>n)
{
ll d=calc(R-cs)+mod-(L-cs-<?:calc(L-cs-));
upd(d);
ans=(ans+xs*d)%mod;//xs may <0 so ans may <0!!!
return;
}
dfs(cr+,xs,cs);
dfs(cr+,-xs,cs+w[cr]+);
}
int main()
{
scanf("%d%d%d",&n,&L,&R);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
m=;for(int i=;i<=n;i++)m*=i; mod=(ll)*m;
dfs(,,); if(ans<)ans+=mod;///
printf("%lld\n",ans/m);
return ;
}
bzoj 3027 [Ceoi2004]Sweet——生成函数的更多相关文章
- bzoj 3027 [Ceoi2004] Sweet —— 生成函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3027 就是 (1+x+x2+...+xm[i]) 乘起来: 原来想和背包一样做,然而时限很短 ...
- bzoj 3027: [Ceoi2004]Sweet (生成函数)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3027. 题目大意:有$n$种数,每种有$C_i$个,问你在这些数中取出$[l,r]$个 ...
- bzoj 3027: [Ceoi2004]Sweet【生成函数+组合数学】
首先根据生成函数的套路,这个可以写成: \[ \prod_{i=1}^{n}(1+x^1+x^2+...+x^{c[i]}) \] 然后化简 \[ =\prod_{i=1}^{n}\frac{1-x^ ...
- BZOJ 3027: [Ceoi2004]Sweet
容斥 #include<cstdio> using namespace std; int a,b,n,m[15]; long long ans=0,mod=2004; long long ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- [BZOJ3027][Ceoi2004]Sweet 容斥+组合数
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 135 Solved: 66[Submit][Status] ...
- BZOJ3027 - [CEOI2004]Sweet
Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...
- 2018.12.30 bzoj3027: [Ceoi2004]Sweet(生成函数+搜索)
传送门 生成函数好题. 题意简述:给出n个盒子,第iii个盒子里有mim_imi颗相同的糖(但不同盒子中的糖不相同),问有多少种选法可以从各盒子中选出数量在[a,b][a,b][a,b]之间的糖果. ...
- BZOJ 3027 Sweets 生成函数,容斥
Description John得到了n罐糖果.不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的).第i个糖果罐里有 mi个糖果.John决定吃掉一 ...
随机推荐
- UnsatisfiedLinkError X.so is 64-bit instead of 32-bit之Android 64 bit SO加载机制
http://blog.csdn.net/canney_chen/article/details/50633982 今天用户反馈应用闪退崩溃了.然后找呀找… 过程原来是这样的: 还是说下项目背景 应用 ...
- Linux下SPI测试程序
/** 说明:SPI通讯实现* 方式一: 同时发送与接收实现函数: SPI_Transfer()* 方式二:发送与接收分开来实现* SPI_Write() 只发送* SPI_Read() 只接收* 两 ...
- P4121 [WC2005]双面棋盘
题目 P4121 [WC2005]双面棋盘 貌似是刘汝佳出的题目?? 做法 线段树维护并查集 线段树分治\(1\)~\(n\)行,我们要考虑维护的肯定是黑.白各自的联通块数量 考虑区间合并,其实就与中 ...
- 编写自已的第一个MapReduce程序
从进入系统学习到现在,貌似我们还没有真正开始动手写程序,估计有些立志成为Hadoop攻城狮的小伙伴们已经有些急了.环境已经搭好,小讲也有些按捺不住了.今天,小讲就和大家一起来动手编写我们的第一个Map ...
- mongodb count 导致不正确的数量(mongodb count 一个坑)
在mongodb 集群中,if 存在orphaned documents 和chunk migration, count查询可能会导致一个不正确的查询结果,例如我就是踩的这个坑,先不说话,看结果: ...
- string 类(二)
处理string对象中的字符: 在cctype头文件中定义了一组标准库函数来处理string对象中的字符,比如检查一个string对象是否包含空白,或者把string对象中的字母改成小写,再或者查看某 ...
- 汽车AC键到底是干什么的?老司机告诉你
现在很多人都会开车,想我当初学车的时候一会就可以上手了,开车简单,但是很多细节方面的就是得慢慢学习的过程,比如说汽车的AC键,我相信很多车主,包括老司机都不知道到底有哪些作用,只知道开空调,其实它的用 ...
- UVA 580 Critical Mass (两次dp)
题意:一个字符串有n个位置每个位置只可能是L或者U,问你在所有可能出现的字符串中最少出现一次三个U连在一起的字符串的个数 题解:首先从左向右枚举每个位置i,保证i,i+1,i+2是U,并且i+2(不包 ...
- BZOJ 4066 kd-tree 矩形询问求和
第一次遇见强制在线的题目 每个操作都和前面的ans有关 所以不能直接离线做 在这个问题中 kdtree更像一个线段树在一维单点修改区间询问的拓展一样 如果区间被询问区间完全包含 就不用继续递归 插入时 ...
- HDU1565 方格取数(1)
Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数 ...