题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$

题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最大公约数,再判断是否可以被整除就行了

卡点:

C++ Code:

#include <cstdio>
#include <vector>
#define maxn 100010
std::vector<long long> v;
int n, sz;
long long s[maxn];
long long gcd(long long a, long long b) {return b ? gcd(b, a % b) : a;}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", s + i);
long long t = s[1];
for (long long i = 2; i * i <= t; i++) {
if (t % i == 0) {
while (t % i == 0) t /= i;
v.push_back(i);
sz++;
}
}
if (t > 1) v.push_back(t), sz++;
for (int i = 1; i <= n; i++) {
long long tmp = gcd(s[1], s[i]);
if (tmp == 1) printf("-1");
else {
for (int i = 0; i < sz; i++) if (tmp % v[i] == 0) {
printf("%lld", tmp / v[i]);
break;
}
}
putchar(i == n ? '\n' : ' ');
}
return 0;
}

  

[UOJ #48]【UR #3】核聚变反应强度的更多相关文章

  1. 【uoj#48】[UR #3]核聚变反应强度 数论

    题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的 ...

  2. [UR #3] 核聚变反应强度

    次大公约数就是gcd再除以其最小质因子(如果有的话).可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了. #include<bits/stdc++.h> ...

  3. 【UOJ#48】【UR #3】核聚变反应强度(质因数分解)

    [UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所 ...

  4. uoj 48 核聚变反应强度 次小公因数

    [UR #3]核聚变反应强度 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/48 Description 著名核 ...

  5. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

  6. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

  7. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  8. UOJ【UR #12】实验室外的攻防战

    题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径 ...

  9. UOJ 48 次最大公约数

    次最大公约数 = gcd / 其中一个数质因数中最小的. gcd(42,12) = 6;    div(42) = 2*3*7   div(12) = 2^2*3 sgcd(42,12) = 6 / ...

随机推荐

  1. jquery点击按钮复制内容

    做移动端的项目遇到一个需求要点击按钮复制dom里的内容,看了很多资料显示必须textarea或者input里的内容才能简单复制,还有就是用插件的了,最终都因为遇到各种问题放弃,最终选择了最简单的点击复 ...

  2. MFC下的DLL编程学习

    1.DLL库与LIB库对比: 静态链接库Lib(Static Link Library),是在编译的链接阶段将库函数嵌入到应用程序的内部.如果系统中运行的多个应用程序都包含所用到的公共库函数,则必然造 ...

  3. Linux 新建定时任务

    Linux 新建定时任务: 1.查看指定用户列表: crontab -u apache -l 2.切换至对应用户,这里是apache su apache 3.新增定时任务: crontab -e 写入 ...

  4. Hadoop(21)-数据清洗(ELT)简单版

    有一个诸如这样的log日志 去除长度不合法,并且状态码不正确的记录 LogBean package com.nty.elt; /** * author nty * date time 2018-12- ...

  5. 【Hbase二】环境搭建

    此笔记仅用于作者记录复习使用,如有错误地方欢迎留言指正,作者感激不尽,如有转载请指明出处 Hbase环境搭建 Hbase环境搭建 hadoop为HA的Hbase配置 Zookeeper集群的正常部署并 ...

  6. java初级应用:环境安装及配置

    相关文件下载: jdk下载路径:http://www.oracle.com/technetwork/java/javase/downloads/index.html eclipse下载路径:https ...

  7. DedeCMS V5.7sp2最新版本parse_str函数SQL注入漏洞

    织梦dedecms,在整个互联网中许多企业网站,个人网站,优化网站都在使用dede作为整个网站的开发架构,dedecms采用php+mysql数据库的架构来承载整个网站的运行与用户的访问,首页以及栏目 ...

  8. vue---day03

    1. Vue的生命周期 - 创建和销毁的时候可以做一些我们自己的事情 - beforeCreated - created - beforeMount - mounted - beforeUpdate ...

  9. 005---Python数据类型--字典

    字典 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px ...

  10. GIT LFS 使用笔记

    一.背景 由于git上传文件大小受限,所以我们需要使用GIT LFS对大小超过一定上限的大文件进行处理. 二.安装 linux上安装参见 https://askubuntu.com/questions ...