NOIP模拟题 栅栏


题目大意
给定一个$n\times m$的网格图,每次会选择一块矩形沿着网格线铺上栅栏,或者拆除之前铺的栅栏,或者询问两个格子能否不经过栅栏直接到达。
保证栅栏没有重叠或交叉,删去的栅栏删除前一定存在。
题解
考虑两个格子能互相到达,当且仅当包含它们的栅栏完全相同。考虑对每一个栅栏随机一个权值,维护覆盖每个点的所有栅栏的异或和。
询问两个点时,若两个点权值不相同,那么一定不在。否则,可以直接认为覆盖它们的栅栏集合完全相同。
由于在$MaxInt$范围内随机权值,那么一共会出现$2^30$种权值异或和,几乎已经不可能出现重合。也可以用多次随机和扩大权值范围来增大正确率。
至于矩形异或,维护一个点的权值,可以直接使用差分$+$二维树状数组。
复杂度$O(Q\log n\log m)$。
#include<bits/stdc++.h>
#define debug(x) cerr<<#x<<" = "<<x
#define sp <<" "
#define el <<endl
#define LL long long
#define N 2020
#define M 100020
#define pii pair<int,int>
#define mp make_pair
using namespace std;
int read(){
int nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int n,m,nt[M],bf[M],tot,c[N][N],p[M]; map<pii,int> MP;
int rd(){return (rand()<<13)^rand();}
inline void ins(int x,int y,LL dt){
for(int k1=x;k1<=n;k1=nt[k1]) for(int k2=y;k2<=m;k2=nt[k2]) c[k1][k2]^=dt;
}
inline LL qry(int x,int y){
LL tt=0;
for(int k1=x;k1;k1=bf[k1]) for(int k2=y;k2;k2=bf[k2]) tt^=c[k1][k2];
return tt;
}
#define add(x,y,xx,yy,dt) ins(x,y,dt),ins(x,yy+1,dt),ins(xx+1,y,dt),ins(xx+1,yy+1,dt)
int main(){
srand(19260817); n=read(),m=read();
for(int i=1;i<=max(n,m);i++) nt[i]=i+(i&-i),bf[i]=i-(i&-i);
for(int tpe,t1,t2,t3,t4,id,T=read();T;T--){
tpe=read(),t1=read(),t2=read(),t3=read(),t4=read();
if(tpe==1){MP[mp(t1,t2)]=++tot,p[tot]=rd(),add(t1,t2,t3,t4,p[tot]);}
else if(tpe==2){id=MP[mp(t1,t2)];add(t1,t2,t3,t4,p[id]);}
else{bool fg=(qry(t1,t2)==qry(t3,t4));puts(fg?"Yes":"No");}
}
return 0;
}
NOIP模拟题 栅栏的更多相关文章
- 【入门OJ】2003: [Noip模拟题]寻找羔羊
这里可以复制样例: 样例输入: agnusbgnus 样例输出: 6 这里是链接:[入门OJ]2003: [Noip模拟题]寻找羔羊 这里是题解: 题目是求子串个数,且要求简单去重. 对于一个例子(a ...
- NOIP模拟题汇总(加厚版)
\(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...
- 9.9 NOIP模拟题
9.9 NOIP模拟题 T1 两个圆的面积求并 /* 计算圆的面积并 多个圆要用辛普森积分解决 这里只有两个,模拟计算就好 两圆相交时,面积并等于中间两个扇形面积减去两个三角形面积 余弦定理求角度,算 ...
- 8.22 NOIP 模拟题
8.22 NOIP 模拟题 编译命令 g++ -o * *.cpp gcc -o * *.c fpc *.pas 编译器版本 g++/gcc fpc 评测环境 位 Linux, .3GHZ CPU ...
- NOIP模拟题17.9.26
B 君的任务(task)[题目描述]与君初相识,犹如故人归.B 君看到了Z 君的第一题,觉得很难.于是自己出了一个简单题.你需要完成n 个任务,第i 任务有2 个属性ai; bi.其中ai 是完成这个 ...
- noip模拟题题解集
最近做模拟题看到一些好的题及题解. 升格思想: 核电站问题 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 任务:对于给定 ...
- NOIP 模拟题
目录 T1 : grid T2 : ling T3 : threebody 数据可私信我. T1 : grid 题目:在一个\(n*n\)的方格中,你只能斜着走.为了让问题更简单,你还有一次上下左右走 ...
- 9.22 NOIP模拟题
吉林省信息学奥赛 2017 冬令营 ...
- 6.19 noip模拟题(题目及解析转自 hzwer 2014-3-15 NOIP模拟赛)
Problem 1 高级打字机(type.cpp/c/pas) [题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这种高级打字机设计一个程序 ...
随机推荐
- $Android制作和使用Nine-Patch图片
Nine-Patch图片是一种经过特殊处理的png图片,能够指定图片的哪些区域可以被拉伸而哪些区域不可以. (一)普通图片被拉伸时的缺陷 有如下xml文件,其中子LinearLayout的背景图片设置 ...
- Linux基本命令 网络命令
概述 网络和监控命令类似于这些: hostname, ping, ifconfig, iwconfig, netstat, nslookup, traceroute, finger, telnet, ...
- PHP操作MongoDB数据库的示例
http://www.jquerycn.cn/a_8137 本节内容:PHP操作MongoDB数据库的简单示例. Mongodb的常用操作参看手册,php官方的http://us2.php.net/m ...
- WebSocket 的后记
一个美好的概念可以让策划无比幼稚和疯狂, 比如 H5 改变世界呀,小程序替代 APP 呀,现在即时通信也被公司里的他们认为 so easy 了. 这很尴尬好吧,WebSocket(以下简称 ws) 的 ...
- I.MX6Q(TQIMX6Q/TQE9)学习笔记——U-Boot移植
其实Freescale的BSP移植文档已经将u-boot的移植步骤讲述的非常详细了,但为了以后方便查阅,还是按照自己的理解记录在这里. 获取源码 根据前一篇文章搭建好LTIB环境后就可以非常方便的导出 ...
- ceph安装各种报错
[ceph_deploy][ERROR ] RuntimeError: Failed to execute command: ceph-disk-activate –mark-init sysvini ...
- Eclipse Task的使用
参考链接:http://blog.csdn.net/limb99/article/details/8881891; http://hi.baidu.com/jinxv1987/item/64496f6 ...
- python的pexpect详解
Pexpect 是一个用来启动子程序并对其进行自动控制的纯 Python 模块. Pexpect 可以用来和像 ssh.ftp.passwd.telnet 等命令行程序进行自动交互.继第一部分< ...
- streambase一些疑难杂症
1.webserverReqest控件接收不到换行符\r\n 方案一:这个在streambase7.6.7没有办法处理,只有在streambase7.7.4中才有办法处理,在这个版本中出现了Reque ...
- 生成 (web): 找不到目标 .NET Framework 版本的引用程序集;请确保已安装这些程序集或选择有效的目标版本。
刚刚还好好的,不知道修改什么了,突然出现如下错误: Default.aspx(36): 生成 (web): 找不到目标 .NET Framework 版本的引用程序集:请确保已安装这些程序集或选择有效 ...