洛谷 P2261 [CQOI2007]余数求和
一看就知道是一个数学题。嘿嘿~
讲讲各种分的做法吧。
30分做法:不知道,这大概是这题的难点吧!
60分做法:
一是直接暴力,看下代码吧~
#include <bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long
_int main()
{
int n,k,ans=0;
cin>>n>>k;
for (int i=1;i<=n;++i) {
ans+=(k%i);
}
cout<<ans;
return 0;
}
第二种做法非常接近正解。
首先显然\(k~mod~i=k-\lfloor \frac{k}{i} \rfloor*i\)。
所以我们马上一波转化,\(\sum_{i=1}^{n}k~mod~i=n*k-\sum_{i=1}^{n}\lfloor \frac{k}{i} \rfloor*i\)。
那么这一截\(\sum_{i=1}^{n}\lfloor \frac{k}{i} \rfloor*i\)怎么求呢?
这个时候,直觉会告诉我们,\(\lfloor \frac{k}{i} \rfloor*i\)很有问题。
因为是向下取整,所以会有许多\(\lfloor \frac{k}{i} \rfloor\)是一样的。于是就会有一个一个的区间。
对于每个这样的区间,在乘一个\(i\)后,显然是一个等差数列。
不信看这个:
\((int)8/3=(int)8/4=2~~~~=>~~~~8/3*3+2=8/4*4\)
所以我们可以枚举\(i\),对于每一个\(i\),求出\(t=k/i\),
令\(l=i,r=min(n,k)\)二分,如果\(mid/i=t,l\)扩大,否则\(r\)缩小。
找到后直接等差数列求和。
最后使\(i=r+1\)。这样表面时间复杂度是\(O(\sqrt{n}*log(n))\)。
实则不然,因为我们的\(i\)跳跃的距离基本上很小很小,所以这代码比\(O(n)\)还慢!
看下代码吧!
#include <bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long
int n,k,ans;
_int main()
{
cin>>n>>k;
ans=n*k;
for (int i=1;i<=min(n,k);++i) {
int l=i,r=min(n,k),t=k/i,j=i;
while (l<=r) {
int mid=(l+r)/2;
if (mid/i==t) l=mid+1,j=mid;
else r=mid-1;
}
int a1=t*i,an=a1+(j-i)*t,g=j-i+1;
ans-=(g*(a1+an)/2);
i=j;
}
cout<<ans;
return 0;
}
100正解:
有了上面第二个60分做法的思路,正解就不言而喻了。
只要把\(log(n)\)找区间改成\(O(1)\)就好了。
具体怎么改呢?
我们同样的枚举\(i\),假设区间为\([l,r]\),那么\(l=i\)显然,然后就剩\(r\)有点难搞了。
想想,我们每一段的公差都是\(\lfloor \frac{k}{i} \rfloor\),那么显然当\(k~mod~i=0\)时,\(r\)截止。
所以,\(r=k/(k/l)\)。
那么,就完结了,上代码!真正的极简AC难懂~
#include <bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long
int n,k,ans;
_int main()
{
cin>>n>>k;
ans=n*k;
for (int i=1;i<n;++i) {
int l=i,t=k/l,r=t?min(n,k/t):n;
int a1=t*l,an=a1+(r-l)*t,g=r-l+1;
ans-=(g*(a1+an)/2);
i=r;
}
cout<<ans;
return 0;
}
洛谷 P2261 [CQOI2007]余数求和的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
随机推荐
- <转>巧用notepad++ 批量转换ansi 和 utf8
原方出处:http://stackoverflow.com/questions/7256049/notepad-converting-ansi-encoded-file-to-utf-8 Here s ...
- lua与c++ 中布尔布bool值对应关系
lua代码返回值为真c++ lua_toboolean 返回一个 int lua true = 1 false = 0 c++给lua返回 lua_pushboolean 1 = true 0 = ...
- 控制应用程序重启,外部程序C# 实例
第一步:新建一个控制台项目,作为关闭当前应用程序的调用程序. using System; using System.Configuration; using System.Diagnostics; n ...
- MongoDB安装、CURD增改查删操作、应用场景
NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL".非关系型的数据存储 MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 ...
- bwlabel
bwlabel是用来标记二维的二值图像中的连通组的,简言之,就是黑背景下面有多少白的块,也就是从黑背景甄别白块块的. L = bwlabel(BW, n) returns a matrix L, of ...
- c#序列化和反序列化list
List<UserData> lstStuModel = new List<UserData>() { new UserData(){Name="001", ...
- IOS项目开发中的文件和文件夹操作
+ (NSFileManager *)getNSFileManager { // iNSFileManager是一个静态变量 if (!iNSFileManager) { iNSFileManager ...
- nginx 用法
nginx配置location总结及rewrite规则写法 如何将 /health 重定向到 /health.html https://stackoverflow.com/questions/4614 ...
- 本地调试远程api tag
当你在本地开发js且需要跨域调用远程接口的时候.可按照下列步骤设置你的chrome. 1.创建chrome快捷方式. 2.右键属性新的快捷方式,在目标一栏后面追加 "--args ...
- ThinkPHP与EasyUI整合之二(datagrid):删除多条记录
学习EasyUI已有一段时间了,现在开始逐步把平时学习的细节和难点记录下来. 1. datagrid选中多条记录的语句是: var rows = $('#dg').datagrid('getSelec ...