Description

Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gang are practicing jumping over hurdles. They are getting tired, though, so they want to be able to use as little energy as possible to jump over the hurdles.

Obviously, it is not very difficult for a cow to jump over several very short hurdles, but one tall hurdle can be very stressful. Thus, the cows are only concerned about the height of the tallest hurdle they have to jump over.

The cows' practice room has N ( 1 ≤ N ≤ 300 ) stations, conveniently labeled 1..N. A set of M ( 1 ≤ M ≤ 25,000 ) one-way paths connects pairs of stations; the paths are also conveniently labeled 1..M. Path itravels from station Si to station Ei and contains exactly one hurdle of height Hi ( 1 ≤ Hi ≤ 1,000,000 ). Cows must jump hurdles in any path they traverse.

The cows have T ( 1 ≤ T ≤ 40,000 ) tasks to complete. Task i comprises two distinct numbers, Ai and Bi ( 1 ≤ Ai ≤ N; 1 ≤ Bi ≤ N ), which connote that a cow has to travel from station Ai to station Bi (by traversing over one or more paths over some route). The cows want to take a path the minimizes the height of the tallest hurdle they jump over when traveling from Ai to Bi. Your job is to write a program that determines the path whose tallest hurdle is smallest and report that height.

Input

* Line 1:   Three space-separated integers: NM, and T

* Lines 2..M+1:   Line i+1 contains three space-separated integers: Si , Ei , and Hi

* Lines M+2..M+T+1:   Line i+M+1 contains two space-separated integers that describe task iAi and Bi

Output

* Lines 1..T:   Line i contains the result for task i and tells the smallest possible maximum height necessary to travel between the stations. Output -1 if it is impossible to travel between the two stations.

Sample Input

5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1

Sample Output

4
8
-1

题意:有一头牛,要进行跳木桩训练,已知有n个木桩,而且知道m对木桩之间的高度差。但是它很懒,它想尽可能的跳最小的高度就完成从任意一个木桩到任意一个木桩的跳跃,给m对点,问是否存在最小的跳跃高度使得其能够完成跳跃,如果有就输出最小高度;否则输出-1。

解析:无非就是求个每条路的单边最大值然后取最小那个吗,由于是求任意两木桩之间的所有路径上最大高度差值的最小值,所以我们可以用Floyd算法,对其进行处理,处理之后得到的最终结果即为所求了。

AC代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
int main()
{
int e[][];
int n,m,t,u,v,w;
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i==j)
e[i][j]=;
else
e[i][j]=INF;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(e[u][v]>w)
e[u][v]=w;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
e[i][j]=min(e[i][j],max(e[i][k],e[k][j]));
while(t--)
{
scanf("%d%d",&u,&v);
if(e[u][v]!=INF)
printf("%d\n",e[u][v]);
else
printf("-1\n"); }
return ;
}

做题后感:一开始是考虑深收与DJ算法,后来考虑到是可以提问多个,就改成了flaoy算法,以后多提问问题可以多考虑可以预处理全局的算法

OJ 21651::Cow Hurdles(佛罗一德的变式)的更多相关文章

  1. 佛洛依德 c++ 最短路径算法

    //20142880 唐炳辉 石家庄铁道大学 #include<iostream> #include<string> using namespace std; #define ...

  2. BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏( floyd )

    直接floyd.. ---------------------------------------------------------------------------- #include<c ...

  3. 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏

    1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 424  Solved: 272 ...

  4. bzoj1641 / P2888 [USACO07NOV]牛栏Cow Hurdles

    P2888 [USACO07NOV]牛栏Cow Hurdles Floyd $n<=300$?果断Floyd 给出核心式,自行体会 $d[i][j]=min(d[i][j],max(d[i][k ...

  5. codevs 2803 爱丽丝·玛格特罗依德

    二次联通门 : codevs 2803 爱丽丝·玛格特罗依德 /* codevs 2803 爱丽丝·玛格特罗伊德 高精 + 找规律 显然, 能拆3就多拆3 不能拆就拆2 注意特判一下 */ #incl ...

  6. POJ 3615 Cow Hurdles(最短路径flyod)

    Cow Hurdles Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9337   Accepted: 4058 Descr ...

  7. Luogu P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  8. 洛谷 P2888 [USACO07NOV]牛栏Cow Hurdles

    题目戳 题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the ...

  9. 洛谷P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

随机推荐

  1. Ubuntu无法安装rpm包,ubuntu RPM should not be used directly install RPM packages, use Alien instead!

    Ubuntu无法安装rpm包,ubuntu RPM should not be used directly install RPM packages, use Alien instead! 简单来说, ...

  2. 专题1-MMU-lesson3-MMU配置与使用

    1.段方式MMU 利用虚拟地址然后找到物理地址,通过物理地址访问到led,其过程如下: 一个段的大小是[19:0]总共有1M的地址空间. 从上面可知对应GPIO的段物理基地址是0x7f000000.那 ...

  3. Python基础-3

    目录 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 知识插入:嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 一.函数基本语法 函数是什么? 函数一词 ...

  4. mysql 游标CURSOR

    FETCH cursor_works INTO num,provinceIDs,cityIDs,SourceID; 定义的变量值必须与 游标中的字段不同,一一对应 DECLARE cursor_wor ...

  5. javaScript入门之常用事件

    JS中的常用事件 onfocus/onblur:聚焦离焦事件,用于表单校验的时候比较合适. onclick/ondblclick:鼠标单击和双击事件 onkeydown/onkeypress:搜索引擎 ...

  6. c# as与is的区别

    在c#语言中关于类型的判断与转换有is和as这2种操作符,具体用法如下: is检查一个对象是否兼任与指定的类型,并返回一个Boolean值:true或false,主要,is操作符永远不会抛出异常,一下 ...

  7. 001.linux的基础优化(期中架构方面的优化)

    1. linux内核优化 第一步 cat >>/etc/sysctl.conf<<EOF net.ipv4.tcp_fin_timeout = 2 net.ipv4.tcp_t ...

  8. 单机,伪分布式,完全分布式-----搭建Hadoop大数据平台

    Hadoop大数据——随着计算机技术的发展,互联网的普及,信息的积累已经到了一个非常庞大的地步,信息的增长也在不断的加快.信息更是爆炸性增长,收集,检索,统计这些信息越发困难,必须使用新的技术来解决这 ...

  9. LoadRunner11_MySQL数据库脚本

    记录一次压测过程中,通过LoadRunner向MySQL数据库插入大量数据的过程. [1]需要使用到MySQL的libmysql.dll动态链接库,因此需要安装MySQL:注:本地安装的MySQL最好 ...

  10. 【SSO单点系列】(5):CAS4.0 单点流程序列图

    刚过元旦假期,感觉自己好久没写博客了,今天更新一篇,主要是CAS 的一个流程图. ps: 这两张图 是直接从官网上找的,都是简单的英语,我这种英语四级没过都看得懂,大家应该没有压力. 1.CAS 基本 ...