利用Lucas定理解决大组合数取模

Lucas定理是用来求 C(n,m) mod p,p为素数的值。(注意:p一定是素数)

Lucas定理用来解决大组合数求模是很有用的

Lucas定理最大的数据处理能力是p在10^5左右

表达式:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p

递归方程:(C(n%p, m%p)*Lucas(n/p, m/p))%p。(递归出口为m==0,return 1)

然后来一道裸题

BZOJ2982

 #include<cstdio>
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,p=;
int qpow(int a,int b) //快速幂
{
int ans;
for(ans=;b;b>>=,a=a*a%p)
if(b&) ans=ans*a%p;
return ans;
}
int getc(int n,int m)
{
if(n<m) return ;
if(m>n-m) m=n-m;
long long s1=,s2=;
for(int i=;i<m;i++)
{
s1=s1*(n-i)%p;
s2=s2*(i+)%p;
}
return s1*qpow(s2,p-)%p;
}
int lucas(int n,int m)
{
if(m==) return ;
return getc(n%p,m%p)*lucas(n/p,m/p)%p;
}
int main()
{
int T;
T=read();
while(T--)
{
n=read();m=read();
printf("%d\n",lucas(n,m));
}
return ;
}

大赞快速幂

数学:Lucas定理的更多相关文章

  1. 数学:lucas定理的总结

    今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas. 所以今天看了一下,定理差不多是: (1)Lucas定理:p为素数,则有: 即:lucas(n,m,p)=c(n ...

  2. 数学:拓展Lucas定理

    拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的 ...

  3. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  4. CPC23-4-K. 喵喵的神数 (数论 Lucas定理)

    喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活 ...

  5. Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理

    http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...

  6. Lucas定理详解

    这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...

  7. Lucas定理的运用及组合数奇偶性的判断

    组合数奇偶性的判断 对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数. 最直观的方法就是计算一下,然后看它的奇偶性:但是这个时间以及数据范围上都不允许: 另外一种方法就是 ...

  8. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

  9. 【算法学习笔记】组合数与 Lucas 定理

    卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式 ...

随机推荐

  1. Linux-Ps命令使用

    ps -ef | grep java ps aux | grep java ps aux 是用BSD的格式来显示Java进程 显示的项目有: USER        PID %CPU %MEM    ...

  2. Linux常用命令及搭建测试环境

    题外话:三大操作系统------Linux.Unix.Windows,Unix系统如常见的Mac OS,Linux的很多命令跟Unix是通用的,所以就有一些开发人猿喜欢用苹果的原因.Linux发行版特 ...

  3. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

  4. UVA 11881 Internal Rate of Return(数学+二分)

    In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero ...

  5. winform 不同语言(中文,英文等)

    Visual Studio 对于.NET 程序的本地化提供了完整的支持,这里仅介绍实现多语言版本本地化程序的简单步骤.注意黑体处为关键点.一. 窗体本地化    对于Windows 窗体,你需要做的第 ...

  6. OJ题归纳

    1.求最大公约数 利用辗转相除法求最大公约数 int gcd(int a,int b) { int c,r; if(a<b){c=a;a=b;b=c;} if(b==0) return a; r ...

  7. 阿里云服务器 linux下载 jdk

    直接从本地下载包上传比较慢.直接在服务器上下载安装包: 1.进入orcle官网; 2.选择需要下载的版本,下载需要同意orcle协议, 3.点击下载,获取到下载请求的cookie, 复制所有cooki ...

  8. PAT 甲级 1042 Shuffling Machine

    https://pintia.cn/problem-sets/994805342720868352/problems/994805442671132672 Shuffling is a procedu ...

  9. union的代码有点难理解额

    union跟位域都可以节省内存,而且union在某些地方还能起到更好看的效果? 比如: struct Matrix { union { struct { float _f11, _f12, _f13, ...

  10. slf4j使用log4j学习笔记

    一,介绍 SLF4J 简单日记门面(Facade)SLF4J是为各种loging APIs提供一个简单统一的接口,从而使得最终用户能够在部署的时候配置自己希望的loging APIs实现. Loggi ...