jsencrypt代码分析——openssl的rsa加密解密在js的实现
在js上做rsa,感觉jsencrypt这个是封装的比较好的,但用起来还是遇到了些坑,所以踩进代码里填填坑~
项目在这里 https://github.com/travist/jsencrypt
【rsa算法】
首先科普一下rsa:公钥私钥成对,用其中一个加密只能用另一个解密,常用公钥加密私钥解密。
一开始看到斯坦佛那个库,原始的算法实现:
长度,建议至少1024。模数n(常取默认65537)两边都要用。
指数e,和n一起就是公钥。指数d,和n一起就是私钥。质数p和q用于生成密钥对,然后就丢弃不公开。
具体算法网上一大把,就不多说了。
【ssl/ssh密钥对】
用服务器上的工具生成的密钥对,格式一般是如下,有开始行结束行,内容用base64转码。这里涉及一些国际编码规范,代码分析时在逐一解释。
-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAIA4OVgB4FRq4l5zjEmd4r/jswRcHlZQ
kg10p9rzG3VyXCPpa/ZkwOYy+kGq7a7BjAKTpic2cUNRim4m8HKTdc8CAwEAAQ==
-----END PUBLIC KEY-----
【代码分析】
加载公钥:setPublicKey->setKey->JSEncryptRSAKey->parseKey
RSAKey.prototype.parseKey = function (pem) {...}
注释写得非常好!
/**
...省略...
*This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
* The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
*/
代码如下:
RSAKey.prototype.parseKey = function (pem) {
try {
...
var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem);
var asn1 = ASN1.decode(der);
...
if (asn1.sub.length === 9) {
// Parse the private key.
}
else if (asn1.sub.length === 2) {
// Parse the public key.
var bit_string = asn1.sub[1];
var sequence = bit_string.sub[0];
modulus = sequence.sub[0].getHexStringValue();
this.n = parseBigInt(modulus, 16);
public_exponent = sequence.sub[1].getHexStringValue();
this.e = parseInt(public_exponent, 16);
}
else {
return false;
}
return true;
}
catch (ex) {
return false;
}
};
这里需要了解一下各种编码格式。hex和base64就不解释了。
ASN.1抽象语法标记,我的理解就是对数据进行结构化解析的规范:一个标准的ASN.1编码对象有四个域:对象标识域、数据长度域、数据域以及结束标志(可选,在长度不可知情况下需要,openssl中没有该标志)。
DER则是具体的编码实现。 http://baike.baidu.com/view/100318.htm#4
PKCS#1则是RSA中最基础的算法定义和密钥规定,讲人话就是定义了:公钥是元组(n,e),算法是n=q*p等一系列公式。https://en.wikipedia.org/wiki/PKCS1
这段代码两处亮点,一个是else if (asn1.sub.length === 2)判断公钥(没深究,反正靠子节点数判断);
两一个是var bit_string = asn1.sub[1];即前面有一段asn1.sub[0]是算法标识。
这里本身没有坑,但是生成公钥时如果命令不对应是会踩坑的(有一种命令是生成无算法标记的公钥)~~~
加密:encrypt->RSAEncrypt->pkcs1pad2 | doPublic->RSADoPublic
pkcs1pad2是做补位处理:
入参 var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); 是(模位数+7)/8得到模的字节长度?
然后是一系列的移位操作,此处的作用是填入随机位使得每次加密的密文都不一样。http://blog.chinaunix.net/uid-21880738-id-1813144.html
RSADoPublic最终执行加密算法x^e (mod n)
至此,主要的算法、规范和坑基本上覆盖了,私钥和解密坑比较少,就不多说了。
最后,附送一个千年大坑,跨语言跨类库的时候不小心可能会遇到的 http://blog.chinaunix.net/uid-23069658-id-4282969.html
于这个js类库而言,-pubout出来的是可用的,而-RSAPublicKey_out出来的是不可用的。
与此对应,服务器openssl的类库中PEM_read_RSA_PUBKEY()读入是对应的,而PEM_read_RSAPublicKEY()读入是不对应的。
jsencrypt代码分析——openssl的rsa加密解密在js的实现的更多相关文章
- OpenSSL 中 RSA 加密解密实现源代码分析
1.RSA 公钥和私钥的组成.以及加密和解密的公式: 2.模指数运算: 先做指数运算,再做模运算.如 5^3 mod 7 = 125 mod 7 = 6 3.RSA加密算法流程: 选择一对不同的.而且 ...
- openssl evp RSA 加密解密
openssl evp RSA 加密解密 可以直接使用RSA.h 提供的接口 如下测试使用EVP提供的RSA接口 1. EVP提供的RSA 加密解密 主要接口: int EVP_PKEY_encryp ...
- 利用openssl进行RSA加密解密
openssl是一个功能强大的工具包,它集成了众多密码算法及实用工具.我们即可以利用它提供的命令台工具生成密钥.证书来加密解密文件,也可以在利用其提供的API接口在代码中对传输信息进行加密. RSA是 ...
- 用openssl库RSA加密解密
#include <stdio.h> #include <openssl/rsa.h> #include <openssl/pem.h> #include < ...
- jsencrypt代码分析
jsencrypt代码分析——openssl的rsa加密解密在js的实现 在js上做rsa,感觉jsencrypt这个是封装的比较好的,但用起来还是遇到了些坑,所以踩进代码里填填坑- 项目在这里 ...
- 兼容javascript和C#的RSA加密解密算法,对web提交的数据进行加密传输
Web应用中往往涉及到敏感的数据,由于HTTP协议以明文的形式与服务器进行交互,因此可以通过截获请求的数据包进行分析来盗取有用的信息.虽然https可以对传输的数据进行加密,但是必须要申请证书(一般都 ...
- C# Java间进行RSA加密解密交互(三)
原文:C# Java间进行RSA加密解密交互(三) 接着前面一篇C# Java间进行RSA加密解密交互(二)说吧,在上篇中为了实现 /** * RSA加密 * @param text--待加密的明文 ...
- 基于OpenSSL的RSA加密应用(非算法)
基于OpenSSL的RSA加密应用(非算法) iOS开发中的小伙伴应该是经常用der和p12进行加密解密,而且在通常加密不止一种加密算法,还可以加点儿盐吧~本文章主要阐述的是在iOS中基于openSL ...
- python RSA加密解密及模拟登录cnblog
1.公开密钥加密 又称非对称加密,需要一对密钥,一个是私人密钥,另一个则是公开密钥.公钥加密的只能私钥解密,用于加密客户上传数据.私钥加密的数据,公钥可以解密,主要用于数字签名.详细介绍可参见维基百科 ...
随机推荐
- A. Right-Left Cipher Round #528 (Div. 2)【字符串】
一.题面 题目链接 二.分析 该题就是一个字符串的还原.长度为奇数时从左边开始,长度为偶数时从右边开始. 三.AC代码 #include <bits/stdc++.h> using nam ...
- POJ_1850 Code【组合的运用】
题目: Transmitting and memorizing information is a task that requires different coding systems for the ...
- HDU 5938 Kingdom of Obsession(数论 + 二分图匹配)
题意: 给定S,N,把S+1,S+2,...S+N这N个数填到1,2,...,N里,要求X只能填到X的因子的位置.(即X%Y=0,那么X才能放在Y位置) 问是否能够放满. 分析:经过小队的分析得出的结 ...
- AtCoder Beginner Contest 113 B
B - Palace Time limit : 2sec / Memory limit : 1024MB Score: 200 points Problem Statement A country d ...
- 不要重复发明轮子-C++STL
闫常友 著. 中国铁道出版社. 2013/5 标准的C++模板库,是算法和其他一些标准组件的集合. . 1.类模板简介 2.c++中的字符串 3.容器 4.c++中的算法 5.迭代器 6.STL 数值 ...
- 怎样把ppt格式文件放到网页上?
方法一:把ppt文件的扩展名直接修改为pps,嵌入到网页中嵌入代码:缺点:这种方式浏览器会提示是打开,还是下载,选择打开的话会直接在浏览器中打开,并且客户端一定要安装Office PowerPoint ...
- python爬虫之认识爬虫和爬虫原理
python爬虫之基础学习(一) 网络爬虫 网络爬虫也叫网络蜘蛛.网络机器人.如今属于数据的时代,信息采集变得尤为重要,可以想象单单依靠人力去采集,是一件无比艰辛和困难的事情.网络爬虫的产生就是代替人 ...
- hdu1286 找新朋友 欧拉函数模板
首先这一题用的是欧拉函数!!函数!!不是什么欧拉公式!! 欧拉函数求的就是题目要求的数. 关于欧拉函数的模板网上百度一下到处都是,原理也容易找,这里要介绍一下另一个强势模板. 在这一题的讨论里看到的. ...
- web app与app的区别,即html5与app的区别
公司准备要做一个项目,是p2p配资的app.在网上问了一些人后,发现有的是直接有html5做好后,用软件封装的.之前我学过app的开发,当时Android版本的,知道开发Android app时写的代 ...
- oracle 集群RAC搭建(四)--grid部署
安装教程: