Joint Deep Learning for Pedestrian Detection笔记
1、结构图

Introduction
Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian detection. Existing methods learn or design these components either individually or sequentially. The interaction among these components is not yet well explored. This paper proposes that they should be jointly learned in order to maximize their strengths through cooperation. We formulate these four components into a joint deep learning framework and propose a new deep network architecture
Contribution Highlights
- A unified deep model for jointly learning feature extraction, a part deformation model, an occlusion model and classification. With the deep model, these components interact with each other in the learning process, which allows each component to maximize its strength when cooperating with others .
- We enrich the operation in deep models by incorporating the deformation layer into the convolutional neural networks (CNN). With this layer, various deformation handling approaches can be applied to our deep model.
- The features are learned from pixels through interaction with deformation and occlusion handling models . Such interaction helps to learn more discriminative features.
Citation
If you use our codes or dataset, please cite the following papers:
- W. Ouyang and X. Wang. Joint Deep Learning for Pedestrian Detection. In ICCV, 2013. PDF
Code (Matlab code on Wnidows OS)
Code and dataset on Google Drive:
For users who cannot download from Google Drive:
The files are on the GoogleDocs and Baidu. To Run the code, please read the following readme file:
- Readme
- 1. Put all of the documents into the same folder and decompress them using the command "extract to here". Suppose the root folder is "root", then you should have three folders "root/CNN", "root/data", "root/model", "root/NN", "root/tmptoolbox", "root/util", and "root/dbEval". For "root/data", there should be 4 folders: "root/data/CaltechTest", "root/data/CaltechTrain", "root/data/ETH", and "root/data/INRIATrain".
- 2. Run the "cnnexamples.m" or "testing.m." in the folder "root/CNN" to obtain the results.
FAQ
Joint Deep Learning for Pedestrian Detection笔记的更多相关文章
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- Deep learning with Python 学习笔记(11)
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深 ...
- Deep learning with Python 学习笔记(10)
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 ...
- Deep learning with Python 学习笔记(9)
神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推 ...
- Deep learning with Python 学习笔记(8)
Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Ker ...
- Deep learning with Python 学习笔记(7)
介绍一维卷积神经网络 卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据.这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效. ...
- Deep learning with Python 学习笔记(6)
本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息. ...
- Deep learning with Python 学习笔记(5)
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...
- Deep learning with Python 学习笔记(4)
本节讲卷积神经网络的可视化 三种方法 可视化卷积神经网络的中间输出(中间激活) 有助于理解卷积神经网络连续的层如何对输入进行变换,也有助于初步了解卷积神经网络每个过滤器的含义 可视化卷积神经网络的过滤 ...
随机推荐
- WPF:ListView 分组合并
CollectionViewSource 绑定的是从数据库取出的数据ListBind 以DeptName为分组依据 <Window.Resources> <CollectionVie ...
- Java Integer的底层优化
看一个程序(腾讯题) public class showMain { public static void main(String[] args){ //Double i1=127.00,i2=127 ...
- 读javascript高级程序设计02-变量作用域
一. 延长作用域链 有些语句可以在作用域前端临时增加一个变量对象,该变量对象在代码执行完成后会被移除. ①with语句延长作用域. function buildUrl(){ var qs=" ...
- Supercell only provide the best games for players
Supercell only provide the best games for players Supercell start to change all, Supercell's first t ...
- css浮动(folat),清除浮动(clear)(另加两种清除浮动方式,总共三种清除浮动方式)
css浮动(float) float是css样式,用于设置标签的居左浮动和居右浮动,浮动后的元素不属于html文档流,需要用清除浮动把文档拽回到文档流中 浮动值: left:向左浮动 right:向右 ...
- JSON.parse()和JSON.stringify()的区别
1. parse用于从一个字符串中解析出json对象,如 var str = '{"name":"huangxiaojian","age": ...
- 自定义控件之 TextBox
//textbox typevar boxType = { WaterMarkBox: 0, ValidateBox: 1, SearchBox: 2}var textBoxObj = functio ...
- Java学习指南学习笔记
1, Java是一种静态类型.动态绑定的语言.具体来说,每一个对象都是编译时确定的良好类型.同时,可以在运行时检查一个对象究竟是什么. 2, Java中除了基本数字类型之外,Java中所有的对象都是通 ...
- jsp里边下载文件
//Tomcat下需要这两个//out.clear();//out=pageContext.pushBody(); //weblogic下加上会报错 response.reset();// 清空输出流 ...
- hdu 1036 (I/O routines, fgets, sscanf, %02d, rounding, atoi, strtol) 分类: hdoj 2015-06-16 19:37 32人阅读 评论(0) 收藏
thanks to http://stackoverflow.com/questions/2144459/using-scanf-to-accept-user-input and http://sta ...