题目大意是在1~2^64-1的范围内找到所有符合条件的数,条件要求这个数字是两个或两个以上不同数字的幂,例如64=8^2=4^3。

对于这一题,分析是:如果一个满足这个条件的数字一定可以转换成i^k,而且k是一个合数。同时,幂指数的上限在1~64中,这一点是通过观察筛选数字的范围

所得出的。综上,幂指数k的限定条件是(1<=k<=64,k为合数)。那么在正式筛选数字前可以通过素数筛选从而来标记出1~64中所有的合数,而对于每一种情况的幂指数就是ceil(log(2^64)/log(i))=ceil(64*(log(2)/log(i)))。

接下来需要限定的是底数的范围。我们的筛选范围的最大值也就是2^64-1,而幂指数的最小值为4,所以底数的最大值为2^16-1。则底数的范围就是1~2^16-1.

ps:2^16=1<<16;

剩下的事情就是枚举所有可能的情况,值得一提的是这里用到STL中的set可以节省很多的代码,因为set的特性就是里面的数据不重复而且是按从小到大的顺序排列的。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <set>
#include <string>
#include <iterator>
#include <algorithm>
typedef unsigned long long LL;
using namespace std;
int index[100]={ 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26,
27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46,
48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64};
set<LL> ans;
int main()
{
LL maxt=1<<16,i;
LL temp;
int maxindex,j;
ans.clear();
printf("1\n");
for(i=2;i<maxt;i++)
{
temp=i*i*i*i;
ans.insert(temp);
maxindex=ceil(64*(log(2)/log(i)))-1;//计算每数的幂指数的最大值
for(j=1;index[j]<=maxindex;j++)//筛选出每个数的幂中符合要求的数
{
if(index[j]-index[j-1]==1)
temp=temp*i;
else
temp=temp*i*i;
ans.insert(temp);
}
}
for(set<LL>::iterator iter=ans.begin();iter!=ans.end();iter++)
cout<<*iter<<endl;//这题用printf输出会出现数据丢失而且笔者未能找到有效的解决办法,若有人找到了请回复笔者怎么解决,感激不尽,此处建议用cout输出。
return 0;
}

数论 UVA 11752的更多相关文章

  1. The Super Powers UVA 11752 分析分析 求无符号长整形以内的数满足至少可以用两种不同的次方来表示。比如64 = 2^6 = 8^2; 一个数的1次方不算数。

    /** 题目:The Super Powers UVA 11752 链接:https://vjudge.net/contest/154246#problem/Y 题意:求无符号长整形以内的数满足至少可 ...

  2. uva 11752 The Super Powers (数论+枚举)

    题意:找出1~2^64-1中 能写成至少两个数的幂形式的数,再按顺序输出 分析:只有幂是合数的数才是符合要求的.而幂不会超过64,预处理出64以内的合数. 因为最小的合数是4,所以枚举的上限是2的16 ...

  3. 数论 UVA 10780

    数论题目.有关内容:整数质因数分解,N的阶乘质因数分解,整除的判断. 这道题的题意是给你两个数n.m,要求你求出n!所能整除的m^k的最大值的k是多少. 由于数据范围:1<m<5000,1 ...

  4. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  5. 数论 UVA 11889

    有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值.由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a, ...

  6. uva 11752 The Super Powers 素数+大数判断大小

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  7. 数论 UVA 10791

    这道题目是关于满足同意最小公倍数的所有数对中两数之和的最小值. 题目大意是给你一个数n,要求你求出在所有以n为最小公倍数的数对中两数之和的最小值. 方法:将n进行质因数分解,再将所有分解出的质因子加起 ...

  8. 数论 UVA 11076

    这道题目的意思简单易懂说的是给你n个数(可能有重复相同的数字),列出他们所有排列的情况,再逐位相加,求出和,例如:给你1,2,3,则排列的情况为<123>, <132>, &l ...

  9. 数论 UVA 11388

    这道题是关于两个数的最大公约数和最小公倍数的题目.给你两个数字g,l,分别表示最大公约数和最小公倍数.要求你找到两个数a,b,要求这两个数的最大公约数和最小公倍数为所给的两个数.如果存在多组数字符合这 ...

随机推荐

  1. struts的hello world小试

    struts的hello world小试 前面jdk的安装和配置,tomcat的安装和配置以及java ide的安装和配置就不写了. 在项目中使用流程 创建一个Web项目 导如struts 2.0.1 ...

  2. 深入浅出设计模式——解释器模式(Interpreter Pattern)

    模式动机 如果在系统中某一特定类型的问题发生的频率很高,此时可以考虑将这些问题的实例表述为一个语言中的句子,因此可以构建一个解释器,该解释器通过解释这些句子来解决这些问题.解释器模式描述了如何构成一个 ...

  3. Scrum Meeting 5-20151207

    任务安排 姓名 今日任务 明日任务 困难 董元财 将服务器转移到学校服务器 修复app特定情况下崩溃 无 胡亚坤 学习连接服务器框架 发布界面和购买界面 无 刘猛 在github上分配好任务 写博客 ...

  4. Java设置环境变量的含义(JAVA_HOME,PATH,CLASSPATH)

    开发Java程序之前,需要在计算机行安装并配置Java开发环境.一种是直接安装Myeclipse,利用其自带的JDK编译运行:另一种是在我们的Windows或者Linux平台下安装JDK,配置环境变量 ...

  5. Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)

    前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...

  6. springmvc使用spring自带日期类型验证

    控制器 @Controller public class MyController { // 处理器方法 @RequestMapping(value = "/first.do") ...

  7. TabControl控件的DrawItem事件怎么注册

    只有DrawMode等于OwnerDrawFixed时,才会在绘制选项卡时发生DrawItem事件tabControl1.DrawMode = TabDrawMode.OwnerDrawFixed;

  8. Javascript之运动框架2

    运动框架2与运动框架1的不同之处在于,运动框架2是框架1的升级版,首先完善了传入值,改为move(obj,json,options),在options里面,可以选择传入或者不传入时间,运动形式,以及函 ...

  9. iOS开发UI篇—Quartz2D简单使用(三)

    iOS开发UI篇—Quartz2D简单使用(三) 一.通过slider控制圆的缩放 1.实现过程 新建一个项目,新建一个继承自UIview的类,并和storyboard中自定义的view进行关联. 界 ...

  10. Ubuntu下安装Java环境

    1 Java 8 下载地址 http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-2133151-zhs. ...