1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,⋯,xm>X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。

暴力解法

假设 m<nm<n, 对于母串XX,我们可以暴力找出2m2m个子序列,然后依次在母串YY中匹配,算法的时间复杂度会达到指数级O(n∗2m)O(n∗2m)。显然,暴力求解不太适用于此类问题。

动态规划

假设Z=<z1,z2,⋯,zk>Z=<z1,z2,⋯,zk>是XX与YY的LCS, 我们观察到

•   如果xm=ynxm=yn,则zk=xm=ynzk=xm=yn,有Zk−1Zk−1是Xm−1Xm−1与Yn−1Yn−1的LCS;

•   如果xm≠ynxm≠yn,则ZkZk是XmXm与Yn−1Yn−1的LCS,或者是Xm−1Xm−1与YnYn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS

用二维数组c[i][j]记录串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的LCS长度,则可得到状态转移方程

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
}
}
return c[len1][len2];
}

  

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的结尾——的长度。

得到转移方程:

最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0; //记录最长公共子串长度
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}

3. 参考资料

[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).

如需转载,请注明作者及出处.
作者:Treant

动态规划求最长公共子序列(Longest Common Subsequence, LCS)的更多相关文章

  1. 最长公共子序列(Longest common subsequence)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子序列.(子序列中的字符不要求连续) 这道题可以 ...

  2. HDU 1243 反恐训练营 (动态规划求最长公共子序列)

    反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  3. 利用后缀数组(suffix array)求最长公共子串(longest common substring)

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

  4. 算法实践--最长公共子序列(Longest Common Subsquence)

    什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...

  5. Coincidence (动态规划求最长公共子序列)(王道)

    题目描述: Find a longest common subsequence of two strings. 输入: First and second line of each input case ...

  6. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

  7. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  8. 最长公共子串(Longest common substring)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子串.(子串中的字符要求连续) 这道题和最长公共 ...

  9. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. vue2.0---模板语法

    ***插值 #文本 数据绑定最常见的形式就是双大括号的形式: <div id="app">{{message}}</div> 只要绑定的属性message上 ...

  2. App.config“配置系统未能初始化” 异常解决 C#

    System.Configuration.ConfigurationManager.AppSettings["user"]; 时出现“配置系统未能初始化” 错误 解决办法: 如果配 ...

  3. 常用的数据统计Sql 总结

    最近刚在搞一个BI的项目,里面需要大量的sql 数据统计相关运用,加深了我又对SQL的理解与使用. 所以,分享几个数据统计时常用的sql 语句总结: 1. 统计各个条件下的数据 select Batc ...

  4. Tomcat 利用server.xml进行其他盘符的其他项目映射的部署以及JSP引用其他盘符的图片(虚拟目录及虚拟路径)

    Tomcat 利用server.xml进行项目映射的部署 2013-07-17 15:14 12843人阅读 评论(4) 收藏 举报  分类: web 开发(5)  版权声明:本文为博主原创文章,欢迎 ...

  5. Hive : UDFArgumentTypeException Exactly one argument is expected.

    Hive执行时Failed.. 分段执行发现排除一些聚合函数或者内置函数后可以正常执行.. 因为Hive-Sql语句比较长..有很多的case when then 排除后发现是聚合函数的用法问题.. ...

  6. Rss 订阅:php动态生成xml格式的rss文件

    Rss 简介: 简易信息聚合(也 叫聚合内容)是一种描述和同步网站内容的格式.使用RSS订阅能更快地获取信息,网站提供RSS输出,有利于让用户获取网站内容的最新更新.网络用户可以在客户端借助于支持RS ...

  7. 【转】MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  8. Find Out What Your Entity Framework Query Is Really Doing

    Assuming that you're using Entity Framework 6, you already have a logging tool that can give you som ...

  9. (转载)android:android.content.res.Resources$NotFoundException: String resource ID #..

    android.content.res.Resources$NotFoundException: String resource ID #0x0 找不到资源文件ID #0x0 原因分析如下: 遇到这种 ...

  10. PJAX的实现与应用

    一.前言 web发展经历了一个漫长的周期,最开始很多人认为Javascript这们语言是前端开发的累赘,是个鸡肋,那个时候人们还享受着从一个a链接蹦 到另一个页面的web神奇魔术.后来随着JavaSc ...