题解

只会蠢蠢的\(n^3\)……菜啊……

我们发现最右的端点一定会选,看到的点一定是当前能看到的斜率最小的点变得更小一点,记录下这个点,在我们遇到一个看不到的点的时候,然后只用考虑R到它斜率最小的这个点,是被R看到,不放守卫,还是这个点放一个守卫

也就是\(min(f[l][t] + f[t + 1][r],f[l][t - 1] + f[t][r])\)为什么是对的呢,如果我们枚举的中间点在别的位置,这个位置一定能被R看到,视线还会被R看到的斜率最小的这个点挡住,所以是没有必要枚举的

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
//#define ivorysi
#define pb push_back
#define eps 1e-12
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define fi first
#define se second
#define mo 974711
#define MAXN 5005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) putchar('-'),x = -x;
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct Point {
int64 x,y;
Point(){};
Point(int64 _x,int64 _y) {
x = _x;y = _y;
}
friend int64 operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
}P[MAXN];
int N;
bool vis[MAXN][MAXN];
int f[MAXN][MAXN],ans;
void Solve() {
read(N);int64 h;
for(int i = 1 ; i <= N ; ++i) {
read(h);P[i] = Point(i,h);
}
memset(f,0x3f3f3f3f,sizeof(f));
f[1][1] = 1;ans ^= 1;
for(int r = 2 ; r <= N ; ++r) {
Point T = Point(r,0);int t = r;
f[r][r] = 1;ans ^= 1;
for(int l = r - 1; l >= 1 ; --l) {
if((T - P[r]) * (P[l] - P[r]) < 0) {
T = P[l];t = l;
f[l][r] = f[l + 1][r];
}
else {
f[l][r] = min(f[l][t - 1] + f[t][r],f[l][t] + f[t + 1][r]);
}
ans ^= f[l][r];
}
}
printf("%d\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【LOJ】 #2545. 「JXOI2018」守卫的更多相关文章

  1. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  2. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  7. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  8. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

  9. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

随机推荐

  1. 2016/1/2 Python中的多线程(1):线程初探

    ---恢复内容开始--- 新年第一篇,继续Python. 先来简单介绍线程和进程. 计算机刚开始发展的时候,程序都是从头到尾独占式地使用所有的内存和硬件资源,每个计算机只能同时跑一个程序.后来引进了一 ...

  2. 高性能流媒体服务器EasyDarwin

    标准RTSP拉模式直播(EasyRelayModule):适合内部监控 分布式部署(EasyCMSModule):负载均衡主要是用Reids作为负载

  3. java正则:不包含某个规则字符串【转】

    概述 做日志分析工作的经常需要跟成千上万的日志条目打交道,为了在庞大的数据量中找到特定模式的数据,常常需要编写很多复杂的正则表达式.例如枚举出日志文件中不包含某个特定字符串的条目,找出不以某个特定字符 ...

  4. idea 常用快捷使用

    一.智能提示 1.快速移动到错误代码 :Shift+F2 或者 f2/ 2.快速修复:Alt+Enter 3.快速生成括号:Ctrl+Shift+Enter 二.重构 1.重构功能汇总:Ctrl+Sh ...

  5. soj1010. Zipper

    1010. Zipper Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Given three strings, yo ...

  6. 【leetcode 简单】 第九十九题 字符串相加

    给定两个字符串形式的非负整数 num1 和num2 ,计算它们的和. 注意: num1 和num2 的长度都小于 5100. num1 和num2 都只包含数字 0-9. num1 和num2 都不包 ...

  7. Djangoform表单Ajax控制跳转

    需求: 1:在登陆页面输入账号密码后,ajax异步提交数据给后端验证. 2:验证通过后,后端指定跳转页面,并把页面封装进返回的Json数据中,由ajax控制from表单跳转到目标页面 一:登陆页面HT ...

  8. url参数用&拼接并且按照字母顺序排序方法

    private string urlParamManager(JObject postArray, bool flag) { ArrayList keys = new ArrayList(); for ...

  9. es6解构、中括号前加分号

    在写项目的时候,为了方便使用了下对象的解构,无奈又遇到一坑. 为什么会不能解构呢?因为这里的{}会导致歧义,因为 JavaScript 引擎会将{xxxxx}理解成一个代码块,从而发生语法错误.只有不 ...

  10. [转]双线性插值(Bilinear interpolation)

    1,原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度 ...