Probability Concepts

Unconditional probability and Conditional Probability

  • Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events.
  • Conditional Probability: refer to one where the occurrence of one event affects the probability of the occurrence of another event.

Probability Rules

  • P(AB) = P(A|B)*P(B)
  • P(A or B) = P(A) + P(B) - P(AB)
  • P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) (B1..Bn) is a mutually exclusive and exhaustive set of outcomes.

Expected Value

The expected value is the weighted average of the possible outcomes of a random variable, where the weights are the probabilities that the outcomes will occur.

The degree of disperation of outcomes around the expected value off a random variable is measured using the variance and standard deviation. When pairs of random variables are being observed, the covariance and correlation are used to measure the extent of the relationship between the observed values for the two variables from one observation to the next.

Variance

The variance is calculated as the probability-weighted sum of the squared differences between each possible outcome and expected value.

Var(R)=E([R-E(R)]^2) = w1(R1-E1)^2 + w2(R2-E2)^2 + ... + wn(Rn-En)^2

Note: 普通统计中的方差是平方和直接除以N,这里面假设每个值出现的概率(权重)是一样的,所以除以N就可以了。而且平方和中是每个值减去平均值,而不是期望。同样是就假设每个值的权重是一样的。

Covariance and Correlation

The variance and standard deviation measure the disperation, or valatility, of only one variable. In many finance situations, however, we are interested in how two random variables move in relation to each other.

Covariance is a measure of how two assets move together. It is the expected value of the product of the deviations of two random variables from their respective expected values.

Cov(Ri,Rj) = E{[Ri-E(Ri)][Rj-E(Rj)]}

Note 1: The variance measures how a random variable moves with itself, and the covariance measures how one random variable move with another random variable.

Note 2: The covariance may range from negative infinity to positive infinity

Correlation Coefficient, or simply, correlation is calculate by the covariance of two random variables divided by the product of the random variable's standard deviations.

Corr(Ri, Rj)=Cov(Ri, Rj)/[σ(Ri)σ(Rj)]

Note 1: Correlation measures the strength of the linear relationship between two random variables.

Note 2: Correlation has no units.

Note 3: The correlation ranges from -1 to 1.

Note 4: If Corr(Ri, Rj)=1.0, the random variables have perfect positive correlation.

Note 5: If Corr(Ri, Rj)=-1.0, the random variables have perfect negative correlation.

Note 5: If Corr(Ri, Rj)=0, there is no linear relationship between the variables, indicating that prediction of Ri cannot be made on the basis of Rj using linear method.

Portfolio expected value and Portfolio variance

*Portfolio expected value

*Portfolio variance

Note: specially for two assets, the portfolio variance is calculated:

Bayers' formula

Bayers' formula is used to update a given set of prior probabilities for a given event in response to the arrival of new new information.

Factorial, combination, and permutation

阶乘,组合 和排列

Probability Concepts的更多相关文章

  1. QM4_Probability

    Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncer ...

  2. [Algorithm] 如何正确撸<算法导论>CLRS

    其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...

  3. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  4. 最大似然估计(MLE)与最大后验概率(MAP)

    何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...

  5. 某Facebook工程师写的攻略。

    Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you sho ...

  6. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  7. Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...

  8. (转) Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 Comm ...

  9. An Introduction to Measure Theory and Probability

    目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...

随机推荐

  1. procedure

    create or replace procedure get_username as begin v_id in number:=1 select * from uc_t_staff t where ...

  2. PHP的CLI综合

    tip1:传入参数 使用标准的输入和输出    PHP CLI会定义三个常量,以便让在命令行提示符下与解释器进行交互操作更加容易.这些常量见表格A.表格A 常量 说明STDIN 标准的输入设备STDO ...

  3. Appium Python 四:怎样获取APP的Package以及Activity

    看到一篇很好的博客:[Android测试][随笔]获得App的包名和启动页Activity 除了博客上的方法,我还找到两种方法: 方法一:aapt 前提需要使用SDK Manager.exe 下载 A ...

  4. Java从零开始学十九(异常)

    一.什么是异常 从字面上讲,就是不正常的现实就是异常. 程序中的异常也是要在程序运行中才会偶尔发生.如果程序还没有运行,编译就报错,这种不叫异常,这种叫编译错误,通常是语法上的错误 二.java中异常 ...

  5. __inline定义的内联函数和宏的区别

    转自:http://blog.csdn.net/lw370481/article/details/7311668 函数与宏 #define TABLE_COMP(x) ((x)>0?(x):0) ...

  6. MySQL单列索引和组合索引(联合索引)的区别详解

    发现index merge局限性,优化器会自动判断是否使用 index merge 优化技术,查询还是需要组合索引[推荐阅读:对mysql使用索引的误解] MySQL单列索引和组合索引(联合索引)的区 ...

  7. Linux 下升级python和安装pip

    Linux版本升级: 1.  首先确认Linux操作系统中自带的python 版本时候与自己所需要的版本一致 所有的python版本都在https://www.python.org/ftp/pytho ...

  8. Android开发之发送邮件功能的实现(源码分享)

    Android开发中可能会碰到怎样发送邮件的困扰,之前我也查了相关的文档,博友们也分享了不少的发送邮件的办法.总共同拥有3种把,我细致阅读了下,发现有的讲的太过复杂跟麻烦,不够清晰.我今天就来分享下我 ...

  9. rpm常用命令及rpm参数介绍

    RPM是RedhatPackageManager的缩写,是由RedHat公司开发的软件包安装和管理程序,同Windows平台上的Uninstaller比较类似.使用RPM,用户可以自行安装和管理Lin ...

  10. 浅析MySQL各种索引

    MySQL各种索引(由于是浅析大多都不刻意区分搜索引擎) INDEX(普通索引):最主要的索引.没有不论什么限制 ALTER TABLE `table_name` ADD INDEX index_na ...