Probability Concepts
Probability Concepts
Unconditional probability and Conditional Probability
- Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events.
- Conditional Probability: refer to one where the occurrence of one event affects the probability of the occurrence of another event.
Probability Rules
- P(AB) = P(A|B)*P(B)
- P(A or B) = P(A) + P(B) - P(AB)
- P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) (B1..Bn) is a mutually exclusive and exhaustive set of outcomes.
Expected Value
The expected value is the weighted average of the possible outcomes of a random variable, where the weights are the probabilities that the outcomes will occur.

The degree of disperation of outcomes around the expected value off a random variable is measured using the variance and standard deviation. When pairs of random variables are being observed, the covariance and correlation are used to measure the extent of the relationship between the observed values for the two variables from one observation to the next.
Variance
The variance is calculated as the probability-weighted sum of the squared differences between each possible outcome and expected value.
Var(R)=E([R-E(R)]^2) = w1(R1-E1)^2 + w2(R2-E2)^2 + ... + wn(Rn-En)^2
Note: 普通统计中的方差是平方和直接除以N,这里面假设每个值出现的概率(权重)是一样的,所以除以N就可以了。而且平方和中是每个值减去平均值,而不是期望。同样是就假设每个值的权重是一样的。
Covariance and Correlation
The variance and standard deviation measure the disperation, or valatility, of only one variable. In many finance situations, however, we are interested in how two random variables move in relation to each other.
Covariance is a measure of how two assets move together. It is the expected value of the product of the deviations of two random variables from their respective expected values.
Cov(Ri,Rj) = E{[Ri-E(Ri)][Rj-E(Rj)]}
Note 1: The variance measures how a random variable moves with itself, and the covariance measures how one random variable move with another random variable.
Note 2: The covariance may range from negative infinity to positive infinity
Correlation Coefficient, or simply, correlation is calculate by the covariance of two random variables divided by the product of the random variable's standard deviations.
Corr(Ri, Rj)=Cov(Ri, Rj)/[σ(Ri)σ(Rj)]
Note 1: Correlation measures the strength of the linear relationship between two random variables.
Note 2: Correlation has no units.
Note 3: The correlation ranges from -1 to 1.
Note 4: If Corr(Ri, Rj)=1.0, the random variables have perfect positive correlation.
Note 5: If Corr(Ri, Rj)=-1.0, the random variables have perfect negative correlation.
Note 5: If Corr(Ri, Rj)=0, there is no linear relationship between the variables, indicating that prediction of Ri cannot be made on the basis of Rj using linear method.
Portfolio expected value and Portfolio variance
*Portfolio expected value

*Portfolio variance

Note: specially for two assets, the portfolio variance is calculated:
Bayers' formula
Bayers' formula is used to update a given set of prior probabilities for a given event in response to the arrival of new new information.

Factorial, combination, and permutation
阶乘,组合 和排列

Probability Concepts的更多相关文章
- QM4_Probability
Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncer ...
- [Algorithm] 如何正确撸<算法导论>CLRS
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 最大似然估计(MLE)与最大后验概率(MAP)
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...
- 某Facebook工程师写的攻略。
Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you sho ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...
- (转) Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts Share: Posted on November 3, 2015by Tim Dettmers 7 Comm ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
随机推荐
- STL - Map - 运行期自定义排序
RuntimeStringCmp.cpp #include <string> using namespace std; // function object to compare stri ...
- android 随手记 读写文件的几种方式
java中多种方式读文件 一.多种方式读文件内容. 1.按字节读取文件内容 2.按字符读取文件内容 3.按行读取文件内容 4.随机读取文件内容 */ import java.io.BufferedRe ...
- webpack 编译ES6插件babel-loader
1.安装babel-loader 参考:http://babeljs.io/docs/setup/#installation 进入项目目录执行安装命名: npm install --save-dev ...
- 通过修改css文件来观察openerp表单中的col和colspan
适用版本 openerp 6.1.1 问题的提出 在openerp的表单定义中, 要使用 colspan和col 指你定各个元素的占位, 前者说明了本元素占据其所在容器的列数, 后者说明了本元素作为容 ...
- Unity 文字爆炸(风化)消失效果 粒子系统应用
利用Unity的粒子系统,使用C#代码控制粒子的位置和速度,实现文字风化爆炸的效果. Unity的东西,不像flash,不能直接放到网页中,没办法了,只能放截图了.有兴趣的可以下载看看:text_ex ...
- eclipse 将javaWeb项目转化成maven项目
eclipse 将javaWeb项目转化成maven项目 CreateTime--2018年4月18日16:04:18 Author:Marydon 1.首先,maven项目的标准目录 2.web ...
- python之模块csv之CSV文件一次写入多行
# -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件一次写入多行 import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很多程序 ...
- 在notepad++中运行python代码
#在notepad++中运行python代码 ''' 1.安装插件pyNPP, 2.允许插件pyNPP中的第一个和第二个选项即可,如果代码过少代码执行一闪而过,可能无法看到,可加入少量sleep时间即 ...
- 在shell中使用sed命令替换/为\/
sed命令相关: https://www.cnblogs.com/ggjucheng/archive/2013/01/13/2856901.html https://www.cnblogs.com/D ...
- Dubbo Monitor 配置
1. Dubbo Monitor 下载dubbo-monitor-simple-2.5.3-assembly.tar.gz 链接:http://pan.baidu.com/s/1gf88wDX 密码: ...
