Probability Concepts

Unconditional probability and Conditional Probability

  • Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events.
  • Conditional Probability: refer to one where the occurrence of one event affects the probability of the occurrence of another event.

Probability Rules

  • P(AB) = P(A|B)*P(B)
  • P(A or B) = P(A) + P(B) - P(AB)
  • P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) (B1..Bn) is a mutually exclusive and exhaustive set of outcomes.

Expected Value

The expected value is the weighted average of the possible outcomes of a random variable, where the weights are the probabilities that the outcomes will occur.

The degree of disperation of outcomes around the expected value off a random variable is measured using the variance and standard deviation. When pairs of random variables are being observed, the covariance and correlation are used to measure the extent of the relationship between the observed values for the two variables from one observation to the next.

Variance

The variance is calculated as the probability-weighted sum of the squared differences between each possible outcome and expected value.

Var(R)=E([R-E(R)]^2) = w1(R1-E1)^2 + w2(R2-E2)^2 + ... + wn(Rn-En)^2

Note: 普通统计中的方差是平方和直接除以N,这里面假设每个值出现的概率(权重)是一样的,所以除以N就可以了。而且平方和中是每个值减去平均值,而不是期望。同样是就假设每个值的权重是一样的。

Covariance and Correlation

The variance and standard deviation measure the disperation, or valatility, of only one variable. In many finance situations, however, we are interested in how two random variables move in relation to each other.

Covariance is a measure of how two assets move together. It is the expected value of the product of the deviations of two random variables from their respective expected values.

Cov(Ri,Rj) = E{[Ri-E(Ri)][Rj-E(Rj)]}

Note 1: The variance measures how a random variable moves with itself, and the covariance measures how one random variable move with another random variable.

Note 2: The covariance may range from negative infinity to positive infinity

Correlation Coefficient, or simply, correlation is calculate by the covariance of two random variables divided by the product of the random variable's standard deviations.

Corr(Ri, Rj)=Cov(Ri, Rj)/[σ(Ri)σ(Rj)]

Note 1: Correlation measures the strength of the linear relationship between two random variables.

Note 2: Correlation has no units.

Note 3: The correlation ranges from -1 to 1.

Note 4: If Corr(Ri, Rj)=1.0, the random variables have perfect positive correlation.

Note 5: If Corr(Ri, Rj)=-1.0, the random variables have perfect negative correlation.

Note 5: If Corr(Ri, Rj)=0, there is no linear relationship between the variables, indicating that prediction of Ri cannot be made on the basis of Rj using linear method.

Portfolio expected value and Portfolio variance

*Portfolio expected value

*Portfolio variance

Note: specially for two assets, the portfolio variance is calculated:

Bayers' formula

Bayers' formula is used to update a given set of prior probabilities for a given event in response to the arrival of new new information.

Factorial, combination, and permutation

阶乘,组合 和排列

Probability Concepts的更多相关文章

  1. QM4_Probability

    Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncer ...

  2. [Algorithm] 如何正确撸<算法导论>CLRS

    其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...

  3. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  4. 最大似然估计(MLE)与最大后验概率(MAP)

    何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...

  5. 某Facebook工程师写的攻略。

    Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you sho ...

  6. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  7. Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...

  8. (转) Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 Comm ...

  9. An Introduction to Measure Theory and Probability

    目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...

随机推荐

  1. fcntl的区域锁定

    文件中的某个部分被锁定了,但其他的程序可以访问这个文件的其他部分,称为文件段锁定或文件区域锁定.经常使用文件区域锁定是fcntl函数. #include <sys/types.h> #in ...

  2. VC操作MPP文件

    1.背景简介 因需要对Office系列进行程序操作,特需要使用COM编程. Microsoft Project生成进度计划,office家族软件,文件后缀为.mpp. 具体信息见维基百科http:// ...

  3. pushlet单播与多播

    近期要弄一个消息推送的功能,在网上找了非常多的关于pushlet的文章,尽管写的都非常具体,可是本人看了以后却总认为是模棱两可···不知道怎样下手,终于參考了这些文章中的一些内容,并结合官网的源码.做 ...

  4. 简单说说Ubuntu利用bzr源码安装OpenERP7.0的操作步骤

    1.修改Ubuntu国内更新源,具体方法自己baidu.google. 修改更新源后,更新系统 sudo apt-get update sudo apt-get upgrade 复制代码 2.安装Po ...

  5. RAM调优之日志分析

    D/dalvikvm: <GC_Reason> <Amount_freed>, <Heap_stats>, <External_memory_stats> ...

  6. DIV+CSS布局重新学习之使用A标签和CSS制作按钮

    这里主要利用A元素的伪类来实现: a:link {color: #FF0000} /* 未访问的链接 */ a:visited {color: #00FF00} /* 已访问的链接 */ a:hove ...

  7. document.ready、window.onload、body.onload的区别

    document的ready事件通常会比window的onload事件先发生,为什么呢? 因为document的ready是在浏览器加载解析并构建完doc文档模型时发生的,而window的onload ...

  8. Redis学习(7)-通用命令

    keys pattern: 获取所有与pattern匹配的key,返回所有与该key匹配的keys. 通配符: *表示任意一个或多个字符串. ?表示一个字符. 例如: 查询所有的key:keys * ...

  9. springboot + mybatis +easyUI整合案例

    概述 springboot推荐使用的是JPA,但是因为JPA比较复杂,如果业务场景复杂,例如企业应用中的统计等需求,使用JPA不如mybatis理想,原始sql调优会比较简单方便,所以我们的项目中还是 ...

  10. maven 继承关系和聚合

    maven继承管理 让版本的管理只在一个地方改变 modules用于聚合,把执行的项目都放到同一的地方用module包括,可以省去一个个项目去mvn install,这样可以所有项目一次聚合 mvn ...