[Codility] CountTriangles
A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 12
There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(vector<int> &A);
that, given a zero-indexed array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 12
the function should return 4, as explained above.
Assume that:
- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].
Complexity:
- expected worst-case time complexity is O(N2);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
给定正整数数组A,长度为N,下标从0开始,求(P,Q,R),满足0<=P<Q<R<N 并且 A[P] + A[Q] > A[R], A[Q] + A[R] > A[P], A[P] + A[R] > A[Q]的三元组个数。
数据范围 N [0..1000], 数组元素[1..10^9]。
要求复杂度 时间O(N ^ 2) ,空间 O(1)。
分析: 显然我们不能枚举……我们可以把数组排序 O(NlogN),甚至O(N^2)的排序都可以。然后还是枚举,只不过枚举两条较小的边A[x] , A[y], 然后我们考虑最大边A[z],设想假设我们固定x, 当y变大时A[x] + A[y]也变大,我们需要A[x] + A[y] > A[z], y变大之前的那些z值现在依然也满足条件,所以我们只要接着上次满足条件的最大的z,继续循环就可以了。所以对于同一个x来说,y和z的变化都是O(N)的。总复杂度O(N^2)。
// you can use includes, for example:
#include <algorithm> // you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl; int solution(vector<int> &A) {
// write your code in C++11
sort(A.begin(), A.end());
int a, b, c;
int res = ;
for (a = ; a < (int)A.size() - ; ++a) {
c = a + ;
for (b = a + ; b < (int)A.size() - ; ++b) {
for (c = max(c, b + ); c < A.size() && A[a] + A[b] > A[c]; ++c);
res += c - b - ;
}
}
return res;
}
[Codility] CountTriangles的更多相关文章
- Codility NumberSolitaire Solution
1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...
- codility flags solution
How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...
- GenomicRangeQuery /codility/ preFix sums
首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...
- *[codility]Peaks
https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...
- *[codility]Country network
https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...
- *[codility]AscendingPaths
https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...
- *[codility]MaxDoubleSliceSum
https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...
- *[codility]Fish
https://codility.com/demo/take-sample-test/fish 一开始习惯性使用单调栈,后来发现一个普通栈就可以了. #include <stack> us ...
- *[codility]CartesianSequence
https://codility.com/programmers/challenges/upsilon2012 求笛卡尔树的高度,可以用单调栈来做. 维持一个单调递减的栈,每次进栈的时候记录下它之后有 ...
随机推荐
- (LeetCode 78)SubSets
Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...
- Struts2(二)action的三种方式
一.普通java类 package com.pb.web.action; /* * 创建普通的java类 */ public class HelloAction1 { public String ex ...
- MySQL主从常见的架构
Master-Slave 级联 双Master互为主备
- vue 数组 新增元素 响应式原理 7种方法
1.问题 思考一个问题,以下代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...
- Ubuntu12.04+OpenERP6.1更改HTTP端口号为80
在Ubuntu12.04中安装好OpenERP6.1以后,默认的端口号为8069,如果我们想改变为默认的80端口,可以通过如下方式处理. 1.首先通过iptables进行端口映射转换:sudo ipt ...
- 使用Nginx Upstream 部署 OpenERP
Openerp 6.1 使用werkzeug 作为web服务的框架,性能比之前的cherrypy 有了很大的改善.但无论是 werkzeug 还是cherrypy ,都不是专门的web服务器.通常的做 ...
- eclipse svn插件
eclipse svn插件 CreateTime--2018年4月22日23:09:42 Author:Marydon 下载地址:eclipse svn插件 将svn插件目录直接拷贝到eclips ...
- DB2的认证和授权
DB2 的安全性由两方面组成:认证和授权 1.认证 认证就是系统验证用户身份的过程.说的简单点,就是验证用户名和密码,因为DB2用户同时也是操作系统用户,所以,首先必须得到操作系统的认可.在默认情况下 ...
- .NET的多种事务处理
Oracle 的事务操作,有时候想在批量操作数据集合的时候,执行一次失败,即为了避免数据异常,将所有的操作回滚..NET给我们提供了良好的事务操作,Oracle端也有事务操作,可以灵活使用,此处介绍. ...
- django和mysql
一.在python2中使用mysql django.core.exceptions.ImproperlyConfigured: Error loading MySQLdb module: No mod ...