杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示

杜芬方程列式如下:

其中

  • γ控制阻尼度
  • α控制韧度
  • β控制动力的非线性度
  • δ驱动力的振幅
  • ω驱动力的圆频率

杜芬方程没有解析解,但可用龙格-库塔法求得数值解。

当γ>0,杜芬振子呈现极限环振动;

相关软件:混沌数学及其软件模拟
相关代码:

//http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view
class DuffingEquation : public DifferentialEquation
{
public:
DuffingEquation()
{
m_StartX = 1.0f;
m_StartY = 1.0f;
m_StartZ = 0.0f; m_ParamA = 2.09f;
m_ParamB = 0.1f;
m_ParamC = 0.5f; m_StepT = 0.002f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = y;
dY = m_ParamA*cosf(m_ParamC*m_ParamT) - m_ParamB*y + x - x*x*x;
dZ = 0.0f;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
bool IsValidParamT() const {return true;}
};

相关截图:

混沌数学之Duffing(杜芬)振子的更多相关文章

  1. 混沌数学之Lorenz(洛伦茨)吸引子

    洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...

  2. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  3. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  4. 混沌数学之Henon吸引子

    Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...

  5. 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)

    拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...

  6. 混沌数学之Rössler(若斯叻)吸引子

    若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...

  7. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  8. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  9. 混沌数学之Feigenbaum模型

          1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...

随机推荐

  1. 安装 Git

    是时候动手尝试下 Git 了,不过得先安装好它.有许多种安装方式,主要分为两种,一种是通过编译源代码来安装:另一种是使用为特定平台预编译好的安装包. 从源代码安装 若是条件允许,从源代码安装有很多好处 ...

  2. Python网络编程之socket应用

    1 引言 本篇主要对Python下网络编程中用到的socket模块进行初步总结.首先从网络基础理论出发,介绍了TCP协议和UDP协议:然后总结了socket中的常用函数:最后通过实际代码展示基本函数的 ...

  3. 【原创】MySQL CPU %sys高的案例分析(一)

    [现象] 最近关注MySQL CPU告警的问题时,发现有一种场景,有一些服务器最近都较频繁的出现CPU告警,其中的现象是 SYS CPU占比较高. 下面的截图来源于“MySQL CPU报警”采集的文件 ...

  4. 监控cpu、内存 <shell>

    获取cpu.内存结果 pid=$1 #获取进程pid echo $pid interval=1 #设置采集间隔 while true do echo $(date +"%y-%m-%d %H ...

  5. maven 发布jar包到远程仓库

    有的时候我们需要发布一些自己写的相关jar包到maven私服,供项目组使用. 首先在setting.xml文件添加,这里 注意 要保证该账户有发布的权限 <servers> <ser ...

  6. [BZOJ 4870] 组合数问题

    Link: 传送门 Solution: 组合数的式子都可以先想想能不能递推,写出来就是: $\sum C_{n*k}^{i*k+r}=\sum C_{n*k-1}^{i*k+r}+\sum C_{n* ...

  7. 【数论】【扩展欧几里得】Codeforces Round #484 (Div. 2) E. Billiard

    题意:给你一个台球桌面,一个台球的初始位置和初始速度方向(只可能平行坐标轴或者与坐标轴成45度角),问你能否滚进桌子四个角落的洞里,如果能,滚进的是哪个洞. 如果速度方向平行坐标轴,只需分类讨论,看它 ...

  8. 用C读取系统明文(附源码)

    从一好朋友那得到一个好东西 可以读取系统明文 请用vc++ 6.0编译 #include <windows.h> #include <stdio.h> // // Vsbat[ ...

  9. BZOJ 1854: [Scoi2010]游戏 并查集

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2672  Solved: 958[Submit][Status][ ...

  10. MySQL数据库基准压力测试工具之MySQLSlap使用实例

    一.Mysqlslap介绍 mysqlslap是MySQL5.1之后自带的benchmark基准测试工具,类似Apache Bench负载产生工具,生成schema,装载数据,执行benckmark和 ...