杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示

杜芬方程列式如下:

其中

  • γ控制阻尼度
  • α控制韧度
  • β控制动力的非线性度
  • δ驱动力的振幅
  • ω驱动力的圆频率

杜芬方程没有解析解,但可用龙格-库塔法求得数值解。

当γ>0,杜芬振子呈现极限环振动;

相关软件:混沌数学及其软件模拟
相关代码:

//http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view
class DuffingEquation : public DifferentialEquation
{
public:
DuffingEquation()
{
m_StartX = 1.0f;
m_StartY = 1.0f;
m_StartZ = 0.0f; m_ParamA = 2.09f;
m_ParamB = 0.1f;
m_ParamC = 0.5f; m_StepT = 0.002f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = y;
dY = m_ParamA*cosf(m_ParamC*m_ParamT) - m_ParamB*y + x - x*x*x;
dZ = 0.0f;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
bool IsValidParamT() const {return true;}
};

相关截图:

混沌数学之Duffing(杜芬)振子的更多相关文章

  1. 混沌数学之Lorenz(洛伦茨)吸引子

    洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...

  2. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  3. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  4. 混沌数学之Henon吸引子

    Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...

  5. 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)

    拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...

  6. 混沌数学之Rössler(若斯叻)吸引子

    若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...

  7. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  8. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  9. 混沌数学之Feigenbaum模型

          1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...

随机推荐

  1. 004 Hadoop2.x基础知识

    一:大数据应用 1.Cloudera cloudera公司是Hadoop三大发行商之一,其版本为CDH版本,现在最新的版本是CDH5. 网站:http://archive.cloudera.com/c ...

  2. ASL测试 课题测试博客

    已知线性表具有元素{5,13,19,21,37,56,64,75,80,88,92},如果使用折半查找法,ASL是多少? 知识点1: 折半查找法:折半查找,又称作二分查找.这个查找的算法的特点,要求数 ...

  3. mongdb 拓展的下载地址和编译安装(php)

    下载地址:https://pecl.php.net/package/mongodb 编译安装: $ tar zxvf mongodb-mongodb-php-driver-<commit_id& ...

  4. [代码审计]DM企业建站系统v201710 sql注入漏洞分析 | 新版v201712依旧存在sql注入

    0x00 前言 本来呢,这套CMS都不想审的了.下载下来打开一看,各种debug注释,排版烂的不行. 贴几个页面看看 感觉像是新手练手的,没有审下去的欲望了. 但想了想,我tm就是新手啊,然后就继续看 ...

  5. CSS3组件化之ios版菊花loading

    <div class="juhua-loading"> <div class="jh-circle1 jh-circle-ios">&l ...

  6. uboot的使用

    嵌入式软件的层次: bootloader +boot_parameter+kernel+ boot filesystem <uboot的编译> 1)将uboot压缩文件拷贝到 linux系 ...

  7. django中缓存配置

    # ======缓存配置====== CACHES = { ## 虚拟缓存,开发调试版本,此为开始调试用,实际内部不做任何操作 # 'default': { # 'BACKEND': 'django. ...

  8. 方程式0day图形化利用工具

    最近方程式的漏洞着实活了一把,分析了下githup上面的文件目录,找到了利用文件,主要是针对windows主机的SMB.RDP协议进行攻击,因为我主要根据他们提供的payload的程序,利用这两个模块 ...

  9. 【BZOJ-3527】力 FFT

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 89 ...

  10. BZOJ 2749 HAOI 2012 外星人 数论 欧拉函数

    题意: 给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次.(多组数据) 范围:pi <= 1e5,qi <= 1e ...