Description

有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\subset A_{i+1,j}, A_{i,j}\subset A_{i,j+1}\)。求这些集合有多少种方案。如果\(A\)和\(B\)两种方案中存在\(i,j\)使得\(A_{i,j}\neq B_{i,j}\),则它们是不同的。\(n, k\leq 10^9\)

Solution

对于\(n=1\)求出方案数,之后将这个方案数取\(n\)次幂即可。因为不同的元素之间是互不影响的。

\(n=1\)时,我实际上要从

\[\begin{matrix}
A_{1,1}\\
A_{2,1}&A_{2,2}\\
A_{3,1}&A_{3,2}&A_{3,3}\\
\vdots&\vdots&\vdots&\ddots\\
A_{k,1}&A_{k,2}&A_{k,3}&\cdots&A_{k,k}
\end{matrix}
\]

这个三角中选出一些来包含\(1\)。

那么,我从这个矩阵左下角即\(A_{k,1}\)的左下方开始,每次向右或上走一步,直到某个\(A_{i,i}\)的左上角(或者\(A_{k,k}\)的右下角);走出这个折线的右下的集合包含\(1\),其它不包含\(1\)。那么我一共会走\((k-i+1)+(i-1)=k\)步,每步可以向右/下走,所以共有\(2^k\)种方案。

综上,答案即为\(2^{nk}\)。

Code

#include <cstdio>
typedef long long LL;
const int mod = 1000000007;
int main() {
int n, k;
scanf("%d%d", &n, &k);
int ans = 1, x = 2;
for (n = (LL)n * k % (mod - 1); n; n >>= 1, x = (LL)x * x % mod)
if (n & 1) ans = (LL)ans * x % mod;
return printf("%d\n", ans) & 0;
}

BZOJ4475 [Jsoi2015]子集选取的更多相关文章

  1. BZOJ4475[Jsoi2015]子集选取——递推(结论题)

    题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16   可以发现 ...

  2. BZOJ4475 JSOI2015子集选取(动态规划)

    数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了.暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现 ...

  3. BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】

    Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...

  4. [BZOJ4475][JSOI2015]子集选取[推导]

    题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...

  5. 【BZOJ4475】 [Jsoi2015]子集选取

    题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...

  6. 【BZOJ4475】子集选取(计数)

    题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...

  7. [题解] LuoguP6075 [JSOI2015]子集选取

    传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...

  8. bzoj 4475: [Jsoi2015]子集选取

    233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...

  9. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

随机推荐

  1. java获取当前文件路径的方法

    第一种: File f = new File(this.getClass().getResource("/").getPath()); System.out.println(f); ...

  2. Python爬虫之Cookie和Session

    关于cookie和session估计很多程序员面试的时候都会被问到,这两个概念在写web以及爬虫中都会涉及,并且两者可能很多人直接回答也不好说的特别清楚,所以整理这样一篇文章,也帮助自己加深理解 什么 ...

  3. Linux 基础命令 持续更新中...

    1.ls 显示当前文件/文件夹 显示文件大小: ls -lh  显示隐藏文件: ls -a 显示文件详细信息: ls -l (ll)2.pwd 显示当前所在路径 cat 显示当前文件下所有内容3.cd ...

  4. 【ARC072F】 Dam 单调队列

    题目大意: 有一个水库,容量为$L$,一开始是空的.有$n$天. 对于第i天,每天早上有$v_i$单位的,水温为$t_i$的水流进来.每天晚上你可以放掉一些水,多少自定.但是必须保证第二天水库不会溢出 ...

  5. 剑指offer三十七之数字在排序数组中出现的次数

    一.题目 统计一个数字在排序数组中出现的次数. 二.思路 解法一:遍历数组计数 解法二:考虑到时有序数组,所以采用分查找,找到第一个K 和 最后一个K的位置, 二者相减. 三.代码 解法一: publ ...

  6. Xpath string()提取多个子节点中的文本

    <div> <ul class="show"> <li>275万购昌平邻铁三居 总价20万买一居</li> <li>00 ...

  7. (转)Python数据分析之numpy学习

    原文:https://www.cnblogs.com/nxld/p/6058572.html https://morvanzhou.github.io/tutorials/data-manipulat ...

  8. 漫谈NIO(2)之Java的NIO

    1.前言 上章提到过Java的NIO采取的是多路IO复用模式,其衍生出来的模型就是Reactor模型.多路IO复用有两种方式,一种是select/poll,另一种是epoll.在windows系统上使 ...

  9. Go语言学习笔记十: 结构体

    Go语言学习笔记十: 结构体 Go语言的结构体语法和C语言类似.而结构体这个概念就类似高级语言Java中的类. 结构体定义 结构体有两个关键字type和struct,中间夹着一个结构体名称.大括号里面 ...

  10. tomcat启动(三)Catalina简要分析

    上篇解析Bootstrap到 daemon.setAwait(true); daemon.load(args); daemon.start(); 这三个方法实际是反射调用org.apache.cata ...