【BZOJ2961】共点圆(CDQ分治)

题面

BZOJ

题解

设询问点\((x,y)\),圆心是\((X,Y)\)

那么如果点在园内的话就需要满足

\((X-x)^2+(Y-y)^2\le X^2+Y^2\)

拆开之后就变成了

\(x^2+y^2-2xX\le 2yY\)

除过去就是\(-\frac{x}{y}X+\frac{x^2+y^2}{2y}\le Y\)

显然左边是一个直线,那么,这个式子的含义就是,

对于任意\((X,Y)\),在\(X\)处的函数值都要小于\(Y\),

即这个直线在所有的圆心下方。

那么维护一下下凸壳,每次拿斜率去切凸壳,检查一下截距就好了。

当然,上面是假装\(y>0\),如果\(y<0\)的话需要变号,变成了所有圆心都在直线的下方了

这里需要维护一个上凸壳。

用\(CDQ\)分治就可以很好的维护这些东西了。

然而我这个傻逼这都不会写

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 500500
#define Sqr(x) ((x)*(x))
const double eps=1e-8;
struct Opt{int op,id;double x,y,k;}p[MAX],tmp[MAX],S1[MAX],S2[MAX];
bool operator<(Opt a,Opt b){return a.k<b.k;}
bool cmp(Opt a,Opt b){return a.id<b.id;}
double Slope(Opt a,Opt b)
{
if(fabs(a.x-b.x)<eps)return a.y<b.y?1e18:-1e18;
return (a.y-b.y)/(a.x-b.x);
}
double Dis(Opt a,Opt b){return sqrt(Sqr(a.x-b.x)+Sqr(a.y-b.y));}
bool ans[MAX];
int n;
void CDQ(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>1,t1=l,t2=mid+1,tp1=0,tp2=0;
for(int i=l;i<=r;++i)
if(p[i].id<=mid)tmp[t1++]=p[i];
else tmp[t2++]=p[i];
for(int i=l;i<=r;++i)p[i]=tmp[i];
CDQ(l,mid);
for(int i=l;i<=mid;++i)
{
if(p[i].op)continue;
while(tp1>1&&Slope(S1[tp1-1],p[i])+eps>Slope(S1[tp1-1],S1[tp1]))--tp1;S1[++tp1]=p[i];
while(tp2>1&&Slope(S2[tp2-1],p[i])-eps<Slope(S2[tp2-1],S2[tp2]))--tp2;S2[++tp2]=p[i];
}
t1=tp1,t2=1;
for(int i=mid+1;i<=r;++i)
{
if(!p[i].op)continue;
if(p[i].y<0)
{
while(t1>1&&Slope(S1[t1-1],S1[t1])<p[i].k)--t1;
if(t1>0&&Dis(S1[t1],S1[0])<Dis(S1[t1],p[i]))ans[p[i].id]=false;
}
else
{
while(t2<tp2&&Slope(S2[t2],S2[t2+1])<p[i].k)++t2;
if(t2<=tp2&&Dis(S2[t2],S2[0])<Dis(S2[t2],p[i]))ans[p[i].id]=false;
}
}
CDQ(mid+1,r);
t1=l;t2=mid+1;
for(int i=l;i<=r;++i)
if(t2>r||(t1<=mid&&p[t1].x<p[t2].x))tmp[i]=p[t1++];
else tmp[i]=p[t2++];
for(int i=l;i<=r;++i)p[i]=tmp[i];
}
int main()
{
freopen("2961.in","r",stdin);
freopen("2961.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;
for(int i=1,opt,sum=0;i<=n;++i)
{
double x,y;
cin>>opt>>x>>y;
if(opt==0)p[i]=(Opt){0,i,x,y,0},++sum;
else p[i]=(Opt){1,i,x,y,0};
if(fabs(y)>eps)p[i].k=-x/y;else p[i].k=1e18;
if(opt==1)ans[i]=(bool)sum;
}
sort(&p[1],&p[n+1]);CDQ(1,n);
sort(&p[1],&p[n+1],cmp);
for(int i=1;i<=n;++i)if(p[i].op)puts(ans[i]?"Yes":"No");
return 0;
}

【BZOJ2961】共点圆(CDQ分治)的更多相关文章

  1. [BZOJ2961] 共点圆 [cdq分治+凸包]

    题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...

  2. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  3. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  4. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  5. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  6. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  7. [BZOJ2961]共点圆-[凸包+cdq分治]

    Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...

  8. bzoj 2961 共点圆 cdq+凸包+三分

    题目大意 两种操作 1)插入一个过原点的圆 2)询问一个点是否在所有的圆中 分析 在圆中则在半径范围内 设圆心 \(x,y\) 查询点\(x_0,y_0\) 则\(\sqrt{(x-x_0)^2+(y ...

  9. 【bzoj2961】 共点圆

    http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...

随机推荐

  1. elementUI实现前端分页

    按照他的文档来写分页,最主要的是el-table里面展示的数据怎么处理 <el-table :data="AllCommodityList.slice((currentPage-1)* ...

  2. Linux AD 身份统一验证(SSO)

    http://www.toxingwang.com/linux-unix/linux-admin/584.html Linux+samba-winbind+AD实现统一认证 2013年04月27日 ⁄ ...

  3. SSO流程

    SSO SSO又名单点登录,用户只需要登录一次就可以访问权限范围内的所有应用子系统.举个简单的例子,你在百度首页登录成功之后,你再访问百度百科.百度知道.百度贴吧等网站也会处于登录状态了,这就是一个单 ...

  4. https、ssl、tls协议学习

    一.知识准备 1.ssl协议:通过认证.数字签名确保完整性:使用加密确保私密性:确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.htt ...

  5. SparkRDD编程实战

    通过spark实现点击流日志分析案例 1. 访问的pv package cn.itcast import org.apache.spark.rdd.RDD import org.apache.spar ...

  6. 不用U盘,用一台好电脑给另一个电脑重装windows10

    先把坏电脑硬盘拆下来,然后挂到好电脑上 把这块盘用系统的磁盘管理工具改成GPT分区表格式,然后整盘分区(NTFS). 再对这个分区进行压缩卷操作,分出第二个区(FAT32格式 大小大于5G 我这里用了 ...

  7. passwd命令详解

    基础命令学习目录首页 passwd命令用于设置用户的认证信息,包括用户密码.密码过期时间等.系统管理者则能用它管理系统用户的密码.只有管理者可以指定用户名称,一般用户只能变更自己的密码. 语法 pas ...

  8. Django_信号

    目录 Django信号介绍 Django内置信号 信号种类 信号注册 自定义信号 实测 内置信号 自定义信号 Django信号介绍 Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲 ...

  9. Beta发布—视频展示

    视频链接:http://v.youku.com/v_show/id_XMzE3ODQ0NjIzMg==.html视频简要内容介绍:1.一个小小的logo展示.2.在alpha的基础上,beta发布中增 ...

  10. [2017BUAA软工]结对项目:数独扩展

    结对项目:数独扩展 1. Github项目地址 https://github.com/Slontia/Sudoku2 2. PSP估计表格 3. 关于Information Hiding, Inter ...