【BZOJ2961】共点圆(CDQ分治)
【BZOJ2961】共点圆(CDQ分治)
题面
题解
设询问点\((x,y)\),圆心是\((X,Y)\)
那么如果点在园内的话就需要满足
\((X-x)^2+(Y-y)^2\le X^2+Y^2\)
拆开之后就变成了
\(x^2+y^2-2xX\le 2yY\)
除过去就是\(-\frac{x}{y}X+\frac{x^2+y^2}{2y}\le Y\)
显然左边是一个直线,那么,这个式子的含义就是,
对于任意\((X,Y)\),在\(X\)处的函数值都要小于\(Y\),
即这个直线在所有的圆心下方。
那么维护一下下凸壳,每次拿斜率去切凸壳,检查一下截距就好了。
当然,上面是假装\(y>0\),如果\(y<0\)的话需要变号,变成了所有圆心都在直线的下方了
这里需要维护一个上凸壳。
用\(CDQ\)分治就可以很好的维护这些东西了。
然而我这个傻逼这都不会写
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 500500
#define Sqr(x) ((x)*(x))
const double eps=1e-8;
struct Opt{int op,id;double x,y,k;}p[MAX],tmp[MAX],S1[MAX],S2[MAX];
bool operator<(Opt a,Opt b){return a.k<b.k;}
bool cmp(Opt a,Opt b){return a.id<b.id;}
double Slope(Opt a,Opt b)
{
if(fabs(a.x-b.x)<eps)return a.y<b.y?1e18:-1e18;
return (a.y-b.y)/(a.x-b.x);
}
double Dis(Opt a,Opt b){return sqrt(Sqr(a.x-b.x)+Sqr(a.y-b.y));}
bool ans[MAX];
int n;
void CDQ(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>1,t1=l,t2=mid+1,tp1=0,tp2=0;
for(int i=l;i<=r;++i)
if(p[i].id<=mid)tmp[t1++]=p[i];
else tmp[t2++]=p[i];
for(int i=l;i<=r;++i)p[i]=tmp[i];
CDQ(l,mid);
for(int i=l;i<=mid;++i)
{
if(p[i].op)continue;
while(tp1>1&&Slope(S1[tp1-1],p[i])+eps>Slope(S1[tp1-1],S1[tp1]))--tp1;S1[++tp1]=p[i];
while(tp2>1&&Slope(S2[tp2-1],p[i])-eps<Slope(S2[tp2-1],S2[tp2]))--tp2;S2[++tp2]=p[i];
}
t1=tp1,t2=1;
for(int i=mid+1;i<=r;++i)
{
if(!p[i].op)continue;
if(p[i].y<0)
{
while(t1>1&&Slope(S1[t1-1],S1[t1])<p[i].k)--t1;
if(t1>0&&Dis(S1[t1],S1[0])<Dis(S1[t1],p[i]))ans[p[i].id]=false;
}
else
{
while(t2<tp2&&Slope(S2[t2],S2[t2+1])<p[i].k)++t2;
if(t2<=tp2&&Dis(S2[t2],S2[0])<Dis(S2[t2],p[i]))ans[p[i].id]=false;
}
}
CDQ(mid+1,r);
t1=l;t2=mid+1;
for(int i=l;i<=r;++i)
if(t2>r||(t1<=mid&&p[t1].x<p[t2].x))tmp[i]=p[t1++];
else tmp[i]=p[t2++];
for(int i=l;i<=r;++i)p[i]=tmp[i];
}
int main()
{
freopen("2961.in","r",stdin);
freopen("2961.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;
for(int i=1,opt,sum=0;i<=n;++i)
{
double x,y;
cin>>opt>>x>>y;
if(opt==0)p[i]=(Opt){0,i,x,y,0},++sum;
else p[i]=(Opt){1,i,x,y,0};
if(fabs(y)>eps)p[i].k=-x/y;else p[i].k=1e18;
if(opt==1)ans[i]=(bool)sum;
}
sort(&p[1],&p[n+1]);CDQ(1,n);
sort(&p[1],&p[n+1],cmp);
for(int i=1;i<=n;++i)if(p[i].op)puts(ans[i]?"Yes":"No");
return 0;
}
【BZOJ2961】共点圆(CDQ分治)的更多相关文章
- [BZOJ2961] 共点圆 [cdq分治+凸包]
题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...
- BZOJ2961 共点圆[CDQ分治]
题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...
- bzoj2961 共点圆 (CDQ分治, 凸包)
/* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...
- BZOJ2961: 共点圆(CDQ分治+凸包)
题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...
- BZOJ2961: 共点圆
好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...
- bzoj2961 共点圆 bzoj 4140
题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...
- [BZOJ2961]共点圆-[凸包+cdq分治]
Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...
- bzoj 2961 共点圆 cdq+凸包+三分
题目大意 两种操作 1)插入一个过原点的圆 2)询问一个点是否在所有的圆中 分析 在圆中则在半径范围内 设圆心 \(x,y\) 查询点\(x_0,y_0\) 则\(\sqrt{(x-x_0)^2+(y ...
- 【bzoj2961】 共点圆
http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...
随机推荐
- 从python容器中随机选取元素
# 1.使用python random模块的choice方法随机选择某个元素 import random foo = ['a', 'b', 'c', 'd', 'e'] from random imp ...
- 【Docker】第三篇 Docker容器管理
一.Docker容器概述: 简单理解容器是镜像的一个实例. 镜像是静态的只读文件,而容器的运行需要可写文件层. 二.创建容器 [root@web130 ~]# docker create -it ub ...
- 2013第四届蓝桥杯C/C++ B组
题目标题: 高斯日记:Excel 大数学家高斯有个好习惯:无论如何都要记日记. 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210 后来人们知道,那个整数就是日期,它表示 ...
- Hyperledger Fabric 中channel配置相关数据结构
channel Configuration Transaction Hyperledger Fabric区块链网络中的配置存储在一个configuration-transaction的集合中,每个ch ...
- 点斜杠 & 如何查看linux程序安装位置 dpkg -L yyy
方法1: sudo find / -name ssh 方法2: Ubuntu下 看应用程序安装路径的方法 ubuntu下dpkg -L xxx看应用程序安装路径 1.点斜杠 “./”就代表在当前目录下 ...
- C# Js 时间格式化问题
C# 后台: .ToString("dd-MMM-yyyy", System.Globalization. DateTimeFormatInfo.InvariantInfo) eg ...
- BUAAMOOC-Alpha版本发布说明
BUAAMOOC-Alpha版本发布说明 本说明为BUAAMOOCv1.0版发布说明. 软件截图 上届软件截图 可以看到上届的界面做的很简陋,对于登录.查看课程列表.观看视频等操作需要跳转多个页面,视 ...
- 实验三 敏捷开发与XP实践 实验报告 20135232王玥
一.实验内容 1. XP基础 2. XP核心实践 3. 相关工具 二.实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2. ...
- java List.get
并不能 用如果List在i位置值不存在 并不能 List.get(i) !=null 判断 会抛异常 版权声明:本文为博主原创文章,未经博主允许不得转载.
- ReentrantLock 和 Condition的使用
ReentrantLock ReentrantLock可以等同于synchronized使用. ReentrantLock 类实现了Lock ,它拥有与 synchronized 相同的并发性和内存 ...