BZOJ 2521: [Shoi2010]最小生成树
2521: [Shoi2010]最小生成树
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 445 Solved: 262
[Submit][Status][Discuss]
Description
.jpg)
当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:
.jpg)
Input
Output
输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。
Sample Input
1 2 2
1 3 2
1 4 3
2 3 2
2 4 4
3 4 5
Sample Output
HINT
第1个样例就是问题描述中的例子。
1<=n<=500,1<=M<=800,1<=D<10^6
Source
题目中的操作——将除这条边外所有其他边的权值全部+1——就是忽悠人的,等价于将这条边的权值+1。
利用Kruskal算法的思想,如果将所有边按照权值从小到大排序后,排在指定边之前(包括和指定边权值相同)的边能使得指定边的两点联通,则指定边一定不会被选中。将一条边从指定边之前移走的最小代价就是使得其变得严格大于指定边,插值是$Val_{id}-Val_{i}+1$。把代价作为容量,跑最小割即可。
#include <cstdio>
#include <cstring> inline char nextChar(void)
{
static const int siz = << ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int nextInt(void)
{
register int ret = ;
register bool neg = false;
register char bit = nextChar(); for (; bit < ; bit = nextChar());
if (bit == '-')neg ^= true; for (; bit > ; bit = nextChar())
ret = ret * + bit - ''; return neg ? -ret : ret;
} const int siz = ;
const int edg = 2e6 + ;
const int inf = 2e9 + ; int n, m, id, s, t; struct edge
{
int x, y, w;
}e[edg]; int hd[siz], to[edg], nt[edg], fl[edg], tot; inline void add(int u, int v, int f)
{
nt[tot] = hd[u]; to[tot] = v; fl[tot] = f; hd[u] = tot++;
nt[tot] = hd[v]; to[tot] = u; fl[tot] = ; hd[v] = tot++;
} int dep[siz]; inline bool bfs(void)
{
static int que[siz];
static int head, tail; memset(dep, , sizeof(dep)); que[head = ] = s, tail = dep[s] = ; while (head != tail)
{
int u = que[head++], v; for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
dep[que[tail++] = v] = dep[u] + ;
} return dep[t];
} int cur[siz]; inline int min(int a, int b)
{
return a < b ? a : b;
} int dfs(int u, int f)
{
if (!f || u == t)
return f; int used = , flow, v; for (int i = cur[u]; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(fl[i], f - used)); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (fl[i])
cur[u] = i; if (used == f)
return f;
} if (!used)
dep[u] = ; return used;
} inline int minCut(void)
{
int minCut = , newFlow; while (bfs())
{
memcpy(cur, hd, sizeof(hd)); while (newFlow = dfs(s, inf))
minCut += newFlow;
} return minCut;
} signed main(void)
{
n = nextInt();
m = nextInt(); id = nextInt(); for (int i = ; i <= m; ++i)
{
e[i].x = nextInt();
e[i].y = nextInt();
e[i].w = nextInt();
} s = e[id].x;
t = e[id].y; int lim = e[id].w; memset(hd, -, sizeof(hd)); for (int i = ; i <= m; ++i)
if (e[i].w <= lim && i != id)
add(e[i].x, e[i].y, lim + - e[i].w),
add(e[i].y, e[i].x, lim + - e[i].w); printf("%d\n", minCut());
}
@Author: YouSiki
BZOJ 2521: [Shoi2010]最小生成树的更多相关文章
- BZOJ 2521: [Shoi2010]最小生成树(最小割)
题意 对于某一条无向图中的指定边 \((a, b)\) , 求出至少需要多少次操作.可以保证 \((a, b)\) 边在这个无向图的最小生成树中. 一次操作指: 先选择一条图中的边 \((u, v)\ ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- bzoj2521 [Shoi2010]最小生成树
[Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MB Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出 ...
- BZOJ 2521 最小生成树(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- BZOJ 2177: 曼哈顿最小生成树
Sol 考了好几次曼哈顿最小生成树,然而一直不会打...这次终于打出来了...神tm调试了2h...好蛋疼... 首先曼哈顿最小生成树有个结论就是讲它每45度分出一个象限,对于每个点,只与每个象限中离 ...
- BZOJ 3732: Network 最小生成树 倍增
3732: Network 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 &l ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
随机推荐
- alibaba/Sentinel 分布式 系统流量防卫兵
Sentinel: 分布式系统的流量防卫兵 Sentinel 是什么? 随着微服务的流行,服务和服务之间的稳定性变得越来越重要.Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多 ...
- java基础---JDK、JRE、JVM的区别和联系
当我们学习java语言时,首先需要安装到我们电脑上的就是jdk.jdk是java语言的开发环境,只有安装了jdk,我们才能使用java语言开发程序. JDK=JRE+开发工具包 JRE=JVM+核心类 ...
- SQLAlchemy并发写入引发的思考
背景 近期公司项目中加了一个积分机制,用户登录签到会获取登录积分,但会出现一种现象就是用户登录时会增加双倍积分,然后生成两个积分记录.此为问题 问题分析 项目采用微服务架构,下图为积分机制流程 ...
- 程序员应该懂的ip地址知识汇总
1.A类ip由1字节(1字节是8位2进制数)的网络地址和3字节的主机地址组成,网络地址最高位必须是0,地址范围是从1.0.0.0到126.0.0.0,所以A类网络地址有126个,每个网络能容纳至少2^ ...
- NIO基本概念
1. IO和NIO的区别 IO 面向流(stream oriented) 阻塞(blocking io) 无 NIO 面向缓冲区(buffer orie ...
- resize2fs命令详解
基础命令学习目录首页 原文链接:http://blog.51cto.com/woyaoxuelinux/1870299 resize2fs:调整ext文件系统的空间大小 搭配逻辑卷lv使用方法: ...
- Tornado之笔记集合
目录 一.基本使用 二.路由系统 三.视图函数 四.模版语言 五.cookie 六.CSRF 七.文件上传 八.异步非阻塞 九.RESTFUL 十.自定义组件 一.基本使用 1.最简使用 import ...
- linux后退文件夹命令
后退文件夹: cd - 在重复一遍就是前进了
- python2.6更改为Python2.7
文中为Python2.6.6,改为Python2.6即可,因为没有/usr/bin/python2.6.6,只有/usr/bin/python2.6 http://blog.csdn.net/jcjc ...
- 作业 20181127-3 互评Beta版本
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2448 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 ...