ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu
Description
The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be \(n\) teams participating in the contest, and the contest will be held on a huge round table with \(m\) seats numbered from 1 to \(m\) in clockwise order around it. The \(i\)-th team will be seated on the \(s_i\)-th seat.
BaoBao, an enthusiast for competitive programming, has made \(p\) predictions of the contest result before the contest. Each prediction is in the form of \((a_i,b_i)\), which means the \(a_i\)-th team solves a problem during the \(b_i\)-th time unit.
As we know, when a team solves a problem, a balloon will be rewarded to that team. The participants will be unhappy if the balloons take almost centuries to come. If a team solves a problem during the \(t_a\)-th time unit, and the balloon is sent to them during the \(t_b\)-th time unit, then the unhappiness of the team will increase by \(t_b-t_a\). In order to give out balloons timely, the organizers of the contest have bought a balloon robot.
At the beginning of the contest (that is to say, at the beginning of the 1st time unit), the robot will be put on the \(k\)-th seat and begin to move around the table. If the robot moves past a team which has won themselves some balloons after the robot's last visit, it will give all the balloons they deserve to the team. During each unit of time, the following events will happen in order:
- The robot moves to the next seat. That is to say, if the robot is currently on the \(i\)-th (\(1 \le i < m\)) seat, it will move to the (\(i+1\))-th seat; If the robot is currently on the \(m\)-th seat, it will move to the 1st seat.
- The participants solve some problems according to BaoBao's prediction.
- The robot gives out balloons to the team seated on its current position if needed.
BaoBao is interested in minimizing the total unhappiness of all the teams. Your task is to select the starting position \(k\) of the robot and calculate the minimum total unhappiness of all the teams according to BaoBao's predictions.
Input
There are multiple test cases. The first line of the input contains an integer \(T\), indicating the number of test cases. For each test case:
The first line contains three integers \(n\), \(m\) and \(p\) (\(1 \le n \le 10^5\), \(n \le m \le 10^9\), \(1 \le p \le 10^5\)), indicating the number of participating teams, the number of seats and the number of predictions.
The second line contains \(n\) integers \(s_1, s_2, \dots, s_n\) (\(1 \le s_i \le m\), and \(s_i \ne s_j\) for all \(i \ne j\)), indicating the seat number of each team.
The following \(p\) lines each contains two integers \(a_i\) and \(b_i\) (\(1 \le a_i \le n\), \(1 \le b_i \le 10^9\)), indicating that the \(a_i\)-th team solves a problem at time \(b_i\) according to BaoBao's predictions.
It is guaranteed that neither the sum of \(n\) nor the sum of \(p\) over all test cases will exceed \(5 \times 10^5\).
Output
For each test case output one integer, indicating the minimum total unhappiness of all the teams according to BaoBao's predictions.
Sample Input
4
2 3 3
1 2
1 1
2 1
1 4
2 3 5
1 2
1 1
2 1
1 2
1 3
1 4
3 7 5
3 5 7
1 5
2 1
3 3
1 5
2 5
2 100 2
1 51
1 500
2 1000
Sample Output
1
4
5
50
Hint
For the first sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (6-4) = 4. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (5-4) = 4. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-4) = 1. So the answer is 1.
For the second sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (3-2) + (3-3) + (6-4) = 5. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (2-2) + (5-3) + (5-4) = 6. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-2) + (4-3) + (4-4) = 4. So the answer is 4.
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。
#include<stdio.h>
#include<iostream>
#include<vector>
#include <cstring>
#include <stack>
#include <cstdio>
#include <cmath>
#include <queue>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include<string>
#include<math.h>
#define max_v 1000005
#define INF 999999999
using namespace std;
typedef long long LL;
LL a[max_v];
LL b[max_v];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
//n个队伍 m个座位 k次ac事件
LL n,m,k;
scanf("%lld %lld %lld",&n,&m,&k); //n个队伍的位置
for(LL i=;i<=n;i++)
scanf("%lld",&a[i]); LL id,time;//队伍id和ac某题的时间
LL sum=;
for(LL i=;i<=k;i++)//假设机器人位置在1 得到所有队伍的不高兴值排序
{
scanf("%lld %lld",&id,&time);
time=time%m;
if(time==)
time=m;
b[i]=(a[id]-time+m)%m;
sum+=b[i];
} sort(b+,b+k+);//将所有队伍的不高兴值排序
long long ans=0x3f3f3f3f3f3f3f3f;
b[]=-;
for(LL i=;i<=k;i++)
{
if(b[i]!=b[i-])
ans=min(ans,sum-k*b[i]+(i-)*m);
}
printf("%lld\n",ans);
}
return ;
}
/*
题意:
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小 分析:
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可 可以写一下机器从1 2 3 开始 各个气球点的等待时代,发现是每次-1 -1,0就变为m。 那么就假设从1开始,得到每个气球的等待数组b。
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。 */
ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)的更多相关文章
- zoj 3778 Talented Chef(思维题)
题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...
- ZOJ 3829 贪心 思维题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 现场做这道题的时候,感觉是思维题.自己智商不够.不敢搞,想着队友智商 ...
- cf A. Inna and Pink Pony(思维题)
题目:http://codeforces.com/contest/374/problem/A 题意:求到达边界的最小步数.. 刚开始以为是 bfs,不过数据10^6太大了,肯定不是... 一个思维题, ...
- 洛谷P4643 [国家集训队]阿狸和桃子的游戏(思维题+贪心)
思维题,好题 把每条边的边权平分到这条边的两个顶点上,之后就是个sb贪心了 正确性证明: 如果一条边的两个顶点被一个人选了,一整条边的贡献就凑齐了 如果分别被两个人选了,一作差就抵消了,相当于谁都没有 ...
- C. Nice Garland Codeforces Round #535 (Div. 3) 思维题
C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记
PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...
- UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)
UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...
- HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)
HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...
- cf796c 树形,思维题
一开始以为是个树形dp,特地去学了..结果是个思维题 /* 树结构,设最大点权值为Max,则答案必在在区间[Max,Max+2] 证明ans <= Max+2 任取一个点作为根节点,那么去掉这个 ...
随机推荐
- Checkpoint not complete
Checkpoint not complete Current log# 2 seq# 876 mem# 0: +DATA/tykfdb/onlinelog/group_2.258.983586883 ...
- 关于 eval 的报错 Uncaught ReferenceError: False is not defined
var obj ={'id': 16, 'name': '管理员', 'delflag': False, 'grade': 1000000.0}VM3614:1 Uncaught ReferenceE ...
- wmware中网络设置技巧
wmware中网络的三种方式: .............................................. (1)桥接模式: 将主机网卡与虚拟机虚拟的网卡利用虚拟网桥进行通信. 默认 ...
- java web项目中引入spring
自己动手实践了一次,发生中间出了一下问题,现整理出来,供参考. Step1: 新建一个java web项目 Step2:下载spring的jar包http://repo.spring.io/libs- ...
- C++虚函数原理
类中的成员函数分为静态成员函数和非静态成员函数,而非静态成员函数又分为普通函数和虚函数. Q: 为什么使用虚函数 A: 使用虚函数,我们可以获得良好的可扩展性.在一个设计比较好的面向对象程序中,大多数 ...
- .Net Core+Vue.js+ElementUI 实现前后端分离
.Net Core+Vue.js+ElementUI 实现前后端分离 Tags: Vue 架构 前端采用:Vue.js.Element-UI.axios 后端采用:.Net Core Mvc 本项目是 ...
- [SQLServer] 数据库SA用户被锁定或者忘记密码的恢复
一.以管理员权限运行命令提示符 CMD C:\>net stop mssqlserver您想继续此操作吗? (Y/N) [N]: y C:\>net start mssqlserver / ...
- [EntityFramework] 对 DateTime 类型使用 SQL 服务器时间或者字段默认值
DateTime 类型在 SQL 服务器上如果设置了默认值,在 EntityFramework 添加新行的时候想使用该默认值,则不能对新增加的实体的 DateTime 字段赋值. 但是如果新增加的实体 ...
- TreeView控件概述、属性与方法
1.作用:用于显示Node结点的分层列表.2.添加到控件箱菜单命令:工程 | 部件,在部件对话框中选择:Microsoft Windows Common Controls 6.03.TreeView控 ...
- javascript版format函数,方便实现复杂字串连接
javascript版format函数,方便实现复杂字串连接 String.prototype.format = function () { var args = arguments; console ...