ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu
Description
The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be \(n\) teams participating in the contest, and the contest will be held on a huge round table with \(m\) seats numbered from 1 to \(m\) in clockwise order around it. The \(i\)-th team will be seated on the \(s_i\)-th seat.
BaoBao, an enthusiast for competitive programming, has made \(p\) predictions of the contest result before the contest. Each prediction is in the form of \((a_i,b_i)\), which means the \(a_i\)-th team solves a problem during the \(b_i\)-th time unit.
As we know, when a team solves a problem, a balloon will be rewarded to that team. The participants will be unhappy if the balloons take almost centuries to come. If a team solves a problem during the \(t_a\)-th time unit, and the balloon is sent to them during the \(t_b\)-th time unit, then the unhappiness of the team will increase by \(t_b-t_a\). In order to give out balloons timely, the organizers of the contest have bought a balloon robot.
At the beginning of the contest (that is to say, at the beginning of the 1st time unit), the robot will be put on the \(k\)-th seat and begin to move around the table. If the robot moves past a team which has won themselves some balloons after the robot's last visit, it will give all the balloons they deserve to the team. During each unit of time, the following events will happen in order:
- The robot moves to the next seat. That is to say, if the robot is currently on the \(i\)-th (\(1 \le i < m\)) seat, it will move to the (\(i+1\))-th seat; If the robot is currently on the \(m\)-th seat, it will move to the 1st seat.
- The participants solve some problems according to BaoBao's prediction.
- The robot gives out balloons to the team seated on its current position if needed.
BaoBao is interested in minimizing the total unhappiness of all the teams. Your task is to select the starting position \(k\) of the robot and calculate the minimum total unhappiness of all the teams according to BaoBao's predictions.
Input
There are multiple test cases. The first line of the input contains an integer \(T\), indicating the number of test cases. For each test case:
The first line contains three integers \(n\), \(m\) and \(p\) (\(1 \le n \le 10^5\), \(n \le m \le 10^9\), \(1 \le p \le 10^5\)), indicating the number of participating teams, the number of seats and the number of predictions.
The second line contains \(n\) integers \(s_1, s_2, \dots, s_n\) (\(1 \le s_i \le m\), and \(s_i \ne s_j\) for all \(i \ne j\)), indicating the seat number of each team.
The following \(p\) lines each contains two integers \(a_i\) and \(b_i\) (\(1 \le a_i \le n\), \(1 \le b_i \le 10^9\)), indicating that the \(a_i\)-th team solves a problem at time \(b_i\) according to BaoBao's predictions.
It is guaranteed that neither the sum of \(n\) nor the sum of \(p\) over all test cases will exceed \(5 \times 10^5\).
Output
For each test case output one integer, indicating the minimum total unhappiness of all the teams according to BaoBao's predictions.
Sample Input
4
2 3 3
1 2
1 1
2 1
1 4
2 3 5
1 2
1 1
2 1
1 2
1 3
1 4
3 7 5
3 5 7
1 5
2 1
3 3
1 5
2 5
2 100 2
1 51
1 500
2 1000
Sample Output
1
4
5
50
Hint
For the first sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (6-4) = 4. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (5-4) = 4. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-4) = 1. So the answer is 1.
For the second sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (3-2) + (3-3) + (6-4) = 5. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (2-2) + (5-3) + (5-4) = 6. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-2) + (4-3) + (4-4) = 4. So the answer is 4.
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。
#include<stdio.h>
#include<iostream>
#include<vector>
#include <cstring>
#include <stack>
#include <cstdio>
#include <cmath>
#include <queue>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include<string>
#include<math.h>
#define max_v 1000005
#define INF 999999999
using namespace std;
typedef long long LL;
LL a[max_v];
LL b[max_v];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
//n个队伍 m个座位 k次ac事件
LL n,m,k;
scanf("%lld %lld %lld",&n,&m,&k); //n个队伍的位置
for(LL i=;i<=n;i++)
scanf("%lld",&a[i]); LL id,time;//队伍id和ac某题的时间
LL sum=;
for(LL i=;i<=k;i++)//假设机器人位置在1 得到所有队伍的不高兴值排序
{
scanf("%lld %lld",&id,&time);
time=time%m;
if(time==)
time=m;
b[i]=(a[id]-time+m)%m;
sum+=b[i];
} sort(b+,b+k+);//将所有队伍的不高兴值排序
long long ans=0x3f3f3f3f3f3f3f3f;
b[]=-;
for(LL i=;i<=k;i++)
{
if(b[i]!=b[i-])
ans=min(ans,sum-k*b[i]+(i-)*m);
}
printf("%lld\n",ans);
}
return ;
}
/*
题意:
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小 分析:
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可 可以写一下机器从1 2 3 开始 各个气球点的等待时代,发现是每次-1 -1,0就变为m。 那么就假设从1开始,得到每个气球的等待数组b。
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。 */
ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)的更多相关文章
- zoj 3778 Talented Chef(思维题)
题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...
- ZOJ 3829 贪心 思维题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 现场做这道题的时候,感觉是思维题.自己智商不够.不敢搞,想着队友智商 ...
- cf A. Inna and Pink Pony(思维题)
题目:http://codeforces.com/contest/374/problem/A 题意:求到达边界的最小步数.. 刚开始以为是 bfs,不过数据10^6太大了,肯定不是... 一个思维题, ...
- 洛谷P4643 [国家集训队]阿狸和桃子的游戏(思维题+贪心)
思维题,好题 把每条边的边权平分到这条边的两个顶点上,之后就是个sb贪心了 正确性证明: 如果一条边的两个顶点被一个人选了,一整条边的贡献就凑齐了 如果分别被两个人选了,一作差就抵消了,相当于谁都没有 ...
- C. Nice Garland Codeforces Round #535 (Div. 3) 思维题
C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记
PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...
- UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)
UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...
- HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)
HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...
- cf796c 树形,思维题
一开始以为是个树形dp,特地去学了..结果是个思维题 /* 树结构,设最大点权值为Max,则答案必在在区间[Max,Max+2] 证明ans <= Max+2 任取一个点作为根节点,那么去掉这个 ...
随机推荐
- CSS通过设置position定位的三种常用定位
CSS中可以通过设置为元素设置一个position属性值,从而达到将不同的元素显示在不同的位置,或者固定显示在某一个位置,或者显示在某一层页面之上. position的值可以设为relative,ab ...
- JavaWEB SSH文件上传
一.提交表单的<form> method属性必须为post 并且添加enctype="multipart/form-data" 属性 前台: <td>上传 ...
- CRM Online Outlook Client Configuration Wizard
CRM Outlook客户端满足和便捷了用户对office outlook和CRM两个程序的使用需求.通过CRM outlook 客户端,用户可以像在浏览器中访问CRM一样,流畅的读写CRM数据.同时 ...
- 产品相关 做产品VS做项目
做产品VS做项目 by:授客 QQ:1033553122 相关定义 根据GB/T19000—2008<质量管理体系基础和术语>,有以下定义 过程process 一组将输入转化为输出的相互关 ...
- 一步一步pwn路由器之radare2使用全解
前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 radare2 最近越来越流行,已经进入 github 前 25了 ...
- 润乾报表一个页面中的echarts地图与其他区块的联动
需求概述: DBD样式效果如下图所示,需要点击左侧地图中的地区,右侧的仪表盘,柱线图可以对应显示对应该地区的数据. 实现思路: 分别制作带有地图.仪表盘.柱线图的3张报表:将3张报表放到DBD中设置布 ...
- Tomcat性能监控之Probe
目前采用java进行开发的系统居多,这些系统运行在java容器中,通过对容器的监控可以了解到java进程的运行状况,分析java程序问题.目前市面上流行的中间件有很多(Tomcat.jetty.jbo ...
- C# List<T>的并集、交集、差集
集合的并集是合并集合的项,如下图所示: List<,,,,, }; List<,,,,,}; IEnumerable<int> unionLs = ls1.Union(ls2) ...
- Linux man 命令详细介绍
知道linux帮助文件(man-pages,手册页)一般放在,$MANPATH/man 目录下面,而且按照领域与语言放到不同的目录里面. 看了上一章,要找那个命令使用相关手册,只要我们按照领域区分,到 ...
- Flask 参数简介
我们都知道学习了Flask的时候它里面的参数是有很多种的参数 都是需要相互进行调用传递的 今天就简要分析一些常见的参数 首先导入Flask之后看 源码 from flask import Flas ...