题目描述

The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget.

The roller coaster will be built on a long linear stretch of land of length L (1 ≤ L ≤ 1,000). The roller coaster comprises a collection of some of the N (1 ≤ N ≤ 10,000) different interchangable components. Each component i has a fixed length Wi (1 ≤ Wi ≤ L). Due to varying terrain, each component i can be only built starting at location Xi (0 ≤ Xi ≤ L - Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component.

Each component i has a "fun rating" Fi (1 ≤ Fi ≤ 1,000,000) and a cost Ci (1 ≤ Ci ≤ 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows' total budget is B (1 ≤ B ≤ 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算 的方案. 过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点 Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一 种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

输入输出格式

输入格式:

Line 1: Three space-separated integers: L, N and B.

Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

输出格式:

Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.

输入输出样例

输入样例#1: 复制

5 6 10
0 2 20 6
2 3 5 6
0 1 2 1
1 1 1 3
1 2 5 4
3 2 10 2
输出样例#1: 复制

17

说明

Taking the 3rd, 5th and 6th components gives a connected roller-coaster with fun value 17 and cost 7. Taking the first two components would give a more fun roller-coaster (25) but would be over budget.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
int f[][];
int L,n,B;
struct node
{
int x,w,f,c;
} a[];
int ans=-;
// function******************************
bool cmp(node a,node b)
{
return a.x<b.x;
} //***************************************
int main()
{
cin>>L>>n>>B;
For(i,,n)
{
cin>>a[i].x>>a[i].w>>a[i].f>>a[i].c;
}
me(f,-);
sort(a+,a++n,cmp);
f[][]=;
For(i,,n)
{
int u=a[i].x;
int v=a[i].x+a[i].w;
FFor(j,B,a[i].c)
{
if(f[u][j-a[i].c]!=-)
f[v][j]=max(f[v][j],f[u][j-a[i].c]+a[i].f);
}
}
For(i,,B)
ans=max(ans,f[L][i]);
cout<<ans; return ;
}

P2854 [USACO06DEC]牛的过山车Cow Roller Coaster的更多相关文章

  1. bzoj1649 / P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster dp 对铁轨按左端点排个序,蓝后就是普通的二维dp了. 设$d[i][j]$为当前位置$i$,成本为$j$的最小花费 ...

  2. 洛谷P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster 题目描述 The cows are building a roller coaster! They want you ...

  3. 【题解】P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster 题目描述 The cows are building a roller coaster! They want you ...

  4. [luoguP2854] [USACO06DEC]牛的过山车Cow Roller Coaster(DP + sort)

    传送门 先按照起点 sort 一遍. 这样每一个点的只由前面的点决定. f[i][j] 表示终点为 i,花费 j 的最优解 状态转移就是一个01背包. ——代码 #include <cstdio ...

  5. BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster( dp )

    有点类似背包 , 就是那样子搞... --------------------------------------------------------------------------------- ...

  6. bzoj1649 [Usaco2006 Dec]Cow Roller Coaster

    Description The cows are building a roller coaster! They want your help to design as fun a roller co ...

  7. 【BZOJ】1649: [Usaco2006 Dec]Cow Roller Coaster(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 又是题解... 设f[i][j]表示费用i长度j得到的最大乐趣 f[i][end[a]]=ma ...

  8. BZOJ——1649: [Usaco2006 Dec]Cow Roller Coaster

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 7 ...

  9. 【bzoj1649】Cow Roller Coaster

    傻逼dp题. dp[i][j]表示用了i长度已花费成本j所能得到的价值. 然后枚举一下铁轨随便做了. 不行就sort一下. #include<bits/stdc++.h> #define ...

随机推荐

  1. MPVUE - 使用vue.js开发微信小程序

    MPVUE - 使用vue.js开发微信小程序 什么是mpvue? mpvue 是美团点评前端团队开源的一款使用 Vue.js 开发微信小程序的前端框架.框架提供了完整的 Vue.js 开发体验,开发 ...

  2. screen 状态为Attached 连不上

    用 screen -ls, 显式当前状态为Attached, 但当前没有用户登陆些会话.screen此时正常状态应该为(Detached)  此时用screen -r ,怎么也登不上. 最后找到解决方 ...

  3. javascript event visualize

    很多时候拿到一个spa,特别是基于jquery的比较复杂的spa时,如果你好奇他是如何工作的,往往没有头绪. 由于spa基本上都是基于事件触发的,一个可行的办法是通过查看事件处理代码能够对spa有一个 ...

  4. win10下vs2015配置Opencv3.1.0过程详解(转)

    下载安装Opencv3.1.0 下载Opencv3.1.0,进入官网,点击opencv for windows即可下载.  点击运行下载好的文件.实际上,opencv的安装程序就是解压缩文件,个人因为 ...

  5. jQuery1.7版本之后的on方法

    之前就一直受这个问题的困扰,在jQuery1.7版本之后添加了on方法,之前就了解过,其优越性高于 live(),bind(),delegate()等方法,在此之前项目中想用这个来测试结果发现,居然动 ...

  6. 如何判断一个整数是否是2的N次幂

    static bool CheckPowerOfTwo(ulong num) { && (num & (num - )) == ; }

  7. python2.7下同步华为云照片的爬虫程序实现

    1.背景 随着华为手机的销量加大,华为云的捆绑服务使用量也越来越广泛,华为云支持自动同步照片.通讯录.记事本等,用着确实也挺方便的,云服务带来方便的同时,也带来了数据管理风险.华为目前只提供一个www ...

  8. 执行一条sql语句update多条记录实现思路

    如果你想更新多行数据,并且每行记录的各字段值都是各不一样,你会怎么办呢?本文以一个示例向大家讲解下如何实现如标题所示的情况,有此需求的朋友可以了解下 通常情况下,我们会使用以下SQL语句来更新字段值: ...

  9. 铁乐学python_Day40_进程池

    进程之间的数据共享 基于消息传递的并发编程是大势所趋, 即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据. 这样极大地减少了对使用锁和其他同步手段的需求,还可以扩展到分 ...

  10. MVC中使用EF的技巧集(一)

    一.建好数据库后,向项目中添加数据模型. 1.右键点击“Models” 文件夹,选择“添加”,再选择“添加新项”. 2.在“添加新项”窗口,选择左边的“数据”,然后再在右边选择“ADO.NET 实体数 ...