CF149D游戏
题目描述
Petya遇到了一个关于括号序列的问题: 给定一个字符串S,它代表着正确的括号序列,即(“(”)与 (“)”)是匹配的。例如:“(())()” 和 “()”是正确的,“)()”与“(()”则不是正确的。 在正确的括号序列中,一个左边的括号一定是匹配一个右边的括号(反之亦然)。例如,在下图中,第 3 个括号匹配第 6 个括号,第 4 个括号匹配第 5 个括号。
现在你需要对一个正确的括号序列做涂色操作,严格满足以下三个条件:
1、每个括号要么不涂色,要么涂红色,要么涂蓝色。
2、一对匹配的括号需要且只能将其中一个涂色。
3、相邻的括号不能涂上同一种颜色(但是可以都不涂颜色)。
求:给整个括号序列涂上颜色的方案数,答案可能比较大,对 1000000007 取模。
输入格式
输入的第一行包含一个字符串 s,(2 <= |s| <= 700)代表一个正确的括号序列。
输出格式
输出方案数。(对 10^9 + 7 取模)
样例
样例1输入
(())
样例1输出
12
样例2输入
(()())
样例2输出
40
样例3输入
()
样例3输出
4
来源:CF149D
此题的主要方法是先分类讨论,要考虑左右边界是否配对
1.如果配对
则会直接继承l+1,r-1的所有方案
2如果不配对
找到左边界配对的,并把[l,r]划分成两个区间最后俩区间方案合并
#include<bits/stdc++.h>
using namespace std;
char s[705];
int pd[705];
long long int xx[705];
long long int t=1;
long long int ans=0;
long long int qc[705][705]={0};
long long int dp[705][705][3][3]={0};//dp[l][r][配色][配色]
void dfs(long long int l,long long int r)
{
if(qc[l][r])//边界
{
return;
}
qc[l][r]=1;
if(r-l==1)
{
dp[l][r][0][1]=1;
dp[l][r][0][2]=1;
dp[l][r][1][0]=1;
dp[l][r][2][0]=1; //()时,配色方案为一个定值
return;//一定走不了了
}
if(pd[l]==r)//可匹配 所一,他的方案数来自与l+1,r-1,方案数的总和
{
dfs(l+1,r-1);//算出前面的接果,不断向一个点缩
for(int i=0;i<=2;i++)//枚举着色 (())
{
for(int j=0;j<=2;j++)//右边界
{
for(int k=0;k<=2;k++) //左+1
{
for(int a=0;a<=2;a++)//右+1
{
if((i==0||j==0)&&(i!=0||j!=0)&&(i!=k||(i+k==0))&&(j!=a||(j+a==0)))//1、每个括号要么不涂色,要么涂红色,要么涂蓝色。且只能将其中一个涂色。3,4、邻的括号不能涂上同一种颜色(但是可以都不涂颜色)。
{
dp[l][r][i][j]+=dp[l+1][r-1][k][a];//累加
dp[l][r][i][j]%=1000000007;//因为如果l+1,r+1无发配对,会进入下一个else中,所以不用判断l+1,r-1是否配对
}
}
}
}
}
}
else
{
dfs(l,pd[l]);
dfs(pd[l]+1,r);//不能把pd[l]算二次,所以要+1
for(int i=0;i<=2;i++)//枚举着色
{
for(int j=0;j<=2;j++)//与上面一样,i,j在一个括号中,i,a是左右端点
{
for(int k=0;k<=2;k++)
{
for(int a=0;a<=2;a++)
{
if((i==0||j==0)&&(i!=0||j!=0)&&(j!=k||(j+k==0)))// j与k是相邻的,要判断;
{
dp[l][r][i][a]+=dp[l][pd[l]][i][j]*dp[pd[l]+1][r][k][a];//为什么要*呢?设为a A,a可一与A,B,C和并,b也是,所以和并时,为两边之积
dp[l][r][i][a]%=1000000007;//而且dp[l][r][i][a]要累加所有合并之积 b B
}// c C
}
}
}
}
}
}
int main()
{
scanf("%s",s+1);
long long int n=strlen(s+1);//如果字符串+1,strlen()中的字符串也要
for(int i=1;i<=n;i++)
{
if(s[i]=='(')
{
xx[t++]=i;
}
else
{
pd[xx[--t]]=i;//模拟一个栈
}
}
/*for(int i=1;i<=n;i++)
{
printf("%d ",pd[i]);
}*/
dfs(1,n);
for(int i=0;i<=2;i++)
{
for(int j=0;j<=2;j++)
{
ans+=dp[1][n][i][j];//加上不同配色的所有方案
ans%=1000000007;
}
}
printf("%lld",ans);
}
CF149D游戏的更多相关文章
- 使用HTML5开发Kinect体感游戏
一.简介 我们要做的是怎样一款游戏? 在前不久成都TGC2016展会上,我们开发了一款<火影忍者手游>的体感游戏,主要模拟手游章节<九尾袭来 >,用户化身四代,与九尾进行对决, ...
- jQuery实践-网页版2048小游戏
▓▓▓▓▓▓ 大致介绍 看了一个实现网页版2048小游戏的视频,觉得能做出自己以前喜欢玩的小游戏很有意思便自己动手试了试,真正的验证了这句话-不要以为你以为的就是你以为的,看视频时觉得看懂了,会写了, ...
- Unity游戏内版本更新
最近研究了一下游戏内apk包更新的方法. ios对于应用的管理比较严格,除非热更新脚本,不太可能做到端内大版本包的更新.然而安卓端则没有此限制.因此可以做到不跳到网页或应用商店,就覆盖更新apk包. ...
- 游戏服务器菜鸟之C#初探一游戏服务
本人80后程序猿一枚,原来搞过C++/Java/C#,因为工作原因最后选择一直从事C#开发,因为读书时候对游戏一直比较感兴趣,机缘巧合公司做一个手游的项目,我就开始游戏服务器的折腾之旅. 游戏的构架是 ...
- iOS审核这些坑,腾讯游戏也踩过
作者:Jamie,专项技术测试工程师,在iOS预审和ASO优化领域从事专项测试相关工作,为腾讯游戏近100个产品提供专项服务. WeTest 导读 在App上架苹果应用商店的过程中,相信大多数iOS开 ...
- 漫谈C#编程语言在游戏领域的应用
0x00 前言 随着微软越来越开放,C#也变得越来越吸引人们的眼球.而在游戏行业中,C#也开始慢慢地获得了关注.这不, 网易绝代双娇手游团队已经全面使用.Net Core支持前后端统一C#开发,跨平台 ...
- 解构C#游戏框架uFrame兼谈游戏架构设计
1.概览 uFrame是提供给Unity3D开发者使用的一个框架插件,它本身模仿了MVVM这种架构模式(事实上并不包含Model部分,且多出了Controller部分).因为用于Unity3D,所以它 ...
- 趣说游戏AI开发:曼哈顿街角的A*算法
0x00 前言 请叫我标题党!请叫我标题党!请叫我标题党!因为下面的文字既不发生在美国曼哈顿,也不是一个讲述美国梦的故事.相反,这可能只是一篇没有那么枯燥的关于算法的文章.A星算法,这个在游戏寻路开发 ...
- 拼图小游戏之计算后样式与CSS动画的冲突
先说结论: 前几天写了几个非常简单的移动端小游戏,其中一个拼图游戏让我郁闷了一段时间.因为要获取每张图片的位置,用`<style>`标签写的样式,直接获取计算后样式再用来交换位置,结果就悲 ...
随机推荐
- 2.8 rust 枚举与模式匹配
Enums and Pattern Matching 摘要 枚举定义 enum IpAddrKind { V4, V6, } 枚举方法 fn main() { enum Message { Quit, ...
- java 动态代理—— Mybaties 拦截器链基本原理实现
1.摘要 Mybaties 中有个分页插件,之前有特意的去了解了一下原理 :https://www.cnblogs.com/jonrain0625/p/11168247.html,从了解中得知分页插件 ...
- Leetcode 78题-子集
LeetCode 78 网上已经又很多解这题的博客了,在这只是我自己的解题思路和自己的代码: 先贴上原题: 我的思路: 我做题的喜欢在本子或别处做写几个示例,以此来总结规律:下图就是我从空数组到数组长 ...
- C#获取Windows10屏幕的缩放比例
现在1920x1080以上分辨率的高分屏电脑渐渐普及了.我们会在Windows的显示设置里看到缩放比例的设置.在Windows桌面客户端的开发中,有时会想要精确计算窗口的面积或位置.然而在默认情况下, ...
- Moment.js使用笔记
零.前情提要 上个月开发了数据平台,用的框架是vue + Ant Design of Vue,其中用了组件[range-picker]日期选择框,涉及到时间方法就去看了momentJS,以此记录~ 如 ...
- OpenGL ES2 缩放移动
OpenGL ES Transformations with Gestures Ricardo Rendon Cepeda on December 10, 2013 Tweet Gestures: I ...
- CF740B Alyona and flowers 题解
Content 有 \(n\) 个数 \(a_1,a_2,a_3,...,a_n\),给定 \(m\) 个区间,你可以选择一些区间使得它们的总和最大(也可以不选),求这个最大的总和. 数据范围:\(1 ...
- CF248A Cupboards 题解
Content 在一个走廊上有 \(2n\) 扇门,排成两列分居左右.有个人很无聊,随意地开关了一些门,使得这些门看起来十分乱.现在请开关一些门,使得这些门恢复原来整齐的状态(要么都开.要么都关.要么 ...
- Nginxre quest_time 和upstream_response_time
nginx优化之request_time 和upstream_response_time差别 https://www.cnblogs.com/dongruiha/p/7007801.html http ...
- centos7使用Dockerfile(docker-compose)运行jar包
Dockerfile文件 FROM openjdk:8-jdk-alpine MAINTAINER "镜像维护者的姓名和邮箱地址" WORKDIR app ADD demo.jar ...