回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种。

设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值。

举个例子:快年底了,销售部门要发年终奖了,销售员小王想知道今年能拿多少年终奖,目前他大抵知道年终奖是和销售额(特征量)挂钩的,具体什么规则不清楚,那么他大概有两个方法解决这个问题:

1、去问老板,今年的分配规则是什么。【通过算法解决问题】

2、去向同事打听他们的销售额和奖金情况,然后推算自己能拿多少。【通过数据解决问题】

我们当然选择第二种方法了。通过收集数据,我们得到下面这个表格:

拿到这个数据,我们基本上很快就能推算出两者的对应关系,如果推算不出来,我们也可以绘制下面这张图表:

通过图表,我们可以立即看出两者的对应关系了。

以上就是一个典型的线性回归求解的问题,下面我们要用TensorFlow框架解决这个问题。

具体解决思路如下:

1、先设w=1,b=0

2、取得一批训练数据,将X代入函数f(x)=wx+b,计算取得在当前条件下的预测值Y‘

3、计算预测值Y‘和实际值Y的误差

4、根据梯度对w、b进行微调

5、重复上述步骤,直到误差值足够小。

先贴出全部代码,然后再逐一解释。

   public class LinearRegression
{
public void Run()
{
// Supper Parameters
float learning_rate = 0.01f; var W = tf.Variable<float>(1);
var b = tf.Variable<float>(0); int epochs = 30;
int steps = 100;
Tensor loss = null; for (int epoch = 0; epoch < epochs; epoch++)
{
for (int step = 0; step < steps; step++)
{
int batch_size = 10;
(NDArray train_X, NDArray train_Y) = LoadBatchData(batch_size); using (var g = tf.GradientTape())
{
//通过当前参数计算预测值
var pred_y = W * train_X + b; //计算预测值和实际值的误差
loss = tf.reduce_sum(tf.pow(pred_y - train_Y, 2)) / batch_size; //计算梯度
var gradients = g.gradient(loss, (W, b)); //更新参数
W.assign_sub(learning_rate * gradients.Item1);
b.assign_sub(learning_rate * gradients.Item2);
}
} Console.WriteLine($"Epoch{epoch + 1}: loss = {loss.numpy()}; W={W.numpy()},b={b.numpy()}");
}
} public (NDArray, NDArray) LoadBatchData(int n_samples)
{
float w = 0.02f;
float b = 1.0f; NDArray train_X = np.arange<float>(start: 1, end: n_samples + 1);
NDArray train_Y = train_X * w + b; return (train_X, train_Y);
}
}

下面对代码进行简单的解释:

首先,我们要读取一批(比如10组 )训练数据,标记为:train_X和train_Y,然后通过现有的w和b值计算预测值:pred_Y=w*train_X_b,此时train_X、train_Y、pred_Y都是10个数据长度的数组。

然后计算预测数据和时间数据之间的误差,我们采用均方误差公式来计算:

然后开始计算W、b对于loss函数的梯度,梯度表达的就是W、b的变化对计算结果的影响,比如将W增大一点,loss的计算结果是变大还是变小,我们的目标是希望loss的值最小,如果w变大时loss变大(梯度为正数),那么我们下一次就将w变小一点,反之同理。

这里的learning_rate表示学习率,表示每次参数进行调整的步进值,就是每次调整一大步,还是一小步。通过多次的循环调整,w和b的值将调整为一个合适的数字,此时loss的值将会很小,线性回归就完成了。以下是运算结果:

在上述过程中,最难理解的就是梯度,以及如何计算梯度的问题,想要进一步了解的话可以参阅相关参考资料。

【相关资源】

源码:Git: https://gitee.com/seabluescn/tf_not.git

项目名称:LinearRegression

目录:查看TensorFlow.NET机器学习入门系列目录

【参考资料】

《深度学习入门:基于Python的理论与实践(斋藤康毅)》,网上可以找到电子版

TensorFlow.NET机器学习入门【2】线性回归的更多相关文章

  1. TensorFlow.NET机器学习入门【0】前言与目录

    曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. ...

  2. TensorFlow.NET机器学习入门【1】开发环境与类型简介

    项目开发环境为Visual Studio 2019 + .Net 5 创建新项目后首先通过Nuget引入相关包: SciSharp.TensorFlow.Redist是Google提供的TensorF ...

  3. TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

    上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...

  4. TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题

    上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...

  5. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  6. TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST

    "如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手 ...

  7. TensorFlow.NET机器学习入门【7】采用卷积神经网络(CNN)处理Fashion-MNIST

    本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建, ...

  8. TensorFlow.NET机器学习入门【8】采用GPU进行学习

    随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改 ...

  9. 45、Docker 加 tensorflow的机器学习入门初步

    [1]最近领导天天在群里发一些机器学习的链接,搞得好像我们真的要搞机器学习似的,吃瓜群众感觉好神奇呀. 第一步 其实也是最后一步,就是网上百度一下,Docker Toolbox,下载下来,下载,安装之 ...

随机推荐

  1. 删除本地仓库中的lastUpdated文件.bat

    @echo off @ ECHO. @ ECHO. @ ECHO. 说 明 @ ECHO ------------------------------------------------------- ...

  2. Codeforces 840C - On the Bench(dp/容斥原理)

    Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2500 的 D1C,可个人认为难度堪比某些 *2700 *2800. 不过嘛,*2500 终究还是 *2500,还是被我自己 ...

  3. azkaban执行任务长时间无法结束

    问题显示: 由于一次执行较多的任务,导致azkaban的web程序崩溃,此时,关闭azkaban服务,重新启动azkaban 但是由于azkaban的exec程序无法关闭,这里采用kill的方式关掉e ...

  4. Macbook pro进入恢复模式以及无法进入恢复模式解决方案

    看网上很多说用Command+R进入恢复模式,但是,大部分都反馈说,此命令并不能进入恢复模式.我自己也尝试发现了同样问题,最终发现解决方案: 问题出在,[是重新启动电脑,而不是关机+按开机键,否则会造 ...

  5. LR SP PC

    LR SP PC 深入理解ARM的这三个寄存器,对编程以及操作系统的移植都有很大的裨益. 1.堆栈指针r13(SP):每一种异常模式都有其自己独立的r13,它通常指向异常模式所专用的堆栈,也就是说五种 ...

  6. Python中类的各式方法介绍

    本文类的方法介绍包括类方法.属性方法.静态方法.修改属性方法等内置装饰器装饰的方法,以及类的一些特殊成员方法 1. 类的特殊成员方法 1.1 构造方法 # -*- coding:utf-8 -*- # ...

  7. 省时省心DTM,广告转化无难题

    内容来源:华为开发者大会2021 HMS Core 6 App Services技术论坛,主题演讲<华为分析服务,助您打造数智化运营闭环方案>. 演讲嘉宾:华为消费者云服务 分析产品总监 ...

  8. c#跳转

    Response.Redirect(EditUrl("MEUID", lblMEUID.Text, "Page2", "PageOneMK" ...

  9. A Child's History of England.27

    Then, the Red King went over to Normandy, where the people suffered greatly under the loose rule of ...

  10. 【leetcode】952. Largest Component Size by Common Factor(Union find)

    You are given an integer array of unique positive integers nums. Consider the following graph: There ...