Variational Inference with Normalizing Flow
Rezende D., Mohamed S. Variational Inference with Normalizing Flow. ICML, 2015.
概
VAE的先验分布很重要, 但是后验分布也很重要, 我们常常假设\(q_{\phi}(z|x)\)满足一个高斯分布, 这就大大限制了近似后验分布的逼近的准确性.
这番假设实在是过于强烈了.
本文提出的 normalizing flows的方法可以提高\(q_{\phi}\)的逼近能力.
主要内容
首先, 假设我们得到了\(q_{0}(z_0|x)\)(通过重采样得到\(z\)), 此时我们通过一个可逆函数\(f\), 得到
\]
则\(z_1\)的分布满足:
\]
以此类推可得:
\ln q_K(z_K) = \ln q_0(z_0) - \sum_{k=1}^K \ln |\mathrm{det} \nabla_{z_{k-1}} f_k|.
\]
也就是说, 只要我们能计算出Jacobian行列式, 那么后验分布的近似能力就大大提高了.
此时ELBO的负数形式为:
\mathcal{F}(x)
&= \mathbb{E}_{q_{\phi}(z|x)}[\ln q_{\phi}(z|x) - \ln p_{\theta}(x,z)] \\
&= \mathbb{E}_{q_{0}(z_0)}[\ln q_{K}(z_K) - \ln p_{\theta}(x,z_K)] \\
&= \mathbb{E}_{q_0(z_0)}[\ln q_0(z_0)] - \mathbb{E}_{q_0(z_0)}[\sum_{k=1}^K\ln |\mathrm{det} \nabla_{z_{k-1}} f_k|] \\
& + \mathbb{E}_{q_0(z_0)} [\ln p_{\theta}(x,z_K)].
\end{array}
\]
注:因为最后一项和\(q_K\)无关, 可以由采样直接近似.
一些合适的可逆变换
\]
其中\(h\)是一个非线性的激活函数. 则
|\mathrm{det} \nabla_z f| = |1 + u^T \psi(z)|.
\]
\gamma = |z - z_0|, h(\alpha, \gamma) = 1/ (\alpha + \gamma).
\]
此时
\]
其中\(d\)是\(z\)的维度.
代码
Variational Inference with Normalizing Flow的更多相关文章
- Improved Variational Inference with Inverse Autoregressive Flow
目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...
- Improving Variational Auto-Encoders using Householder Flow
目录 概 主要内容 代码 Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. N ...
- [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...
- [Bayes] Variational Inference for Bayesian GMMs
为了世界和平,为了心知肚明,决定手算一次 Variational Inference for Bayesian GMMs 目的就是达到如下的智能效果,扔进去六个高斯,最后拟合结果成了两个高斯,当然,其 ...
- 变分推断(Variational Inference)
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...
- Variational Inference
作者:孙九爷链接:https://www.zhihu.com/question/41765860/answer/101915528来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 变分推断(Variational Inference)
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- (zhuan) Variational Autoencoder: Intuition and Implementation
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...
随机推荐
- 【leetcode】212. Word Search II
Given an m x n board of characters and a list of strings words, return all words on the board. Each ...
- mysql 5.7 压缩包安装教程
前言 : 避免之前装的MySQL影响 首先进入dos窗口执行 sc delete mysql 删除已有的mysql服务 (一) 下载MySQL5.7 版本压缩包 网址 https://de ...
- java通过JDBC访问数据库(最基本的查询)
一.步骤介绍 1.通过Class.forName()加载驱动: 2.通过DriverManager.getConnection()获取Conncetion连接对象: 3.创建Statement对象传递 ...
- Android CameraX 打开摄像头预览
目标很简单,用CameraX打开摄像头预览,实时显示在界面上.看看CameraX有没有Google说的那么好用.先按最简单的来,把预览显示出来. 引入依赖 模块gradle的一些配置,使用的Andro ...
- Docker从入门到精通(二)——安装Docker
通过上面文章,我们大概知道了什么是Docker,但那都是文字功夫,具体想要理解,还得实操,于是这篇文章带着大家来手动安装Docker. 1.官方教程 https://docs.docker.com/e ...
- shell脚本 用户登录服务器发送钉钉提醒
一.企业微信配置 1.获取AgentId(AppID).Secret .CropID.部门ID 创建一个企业微信应用获取到AgentId(AppID).Secret 2.获取CropID,点击 &qu ...
- Apache log4j2-RCE 漏洞复现(CVE-2021-44228)
Apache log4j2-RCE 漏洞复现 0x01 漏洞简介 Apache Log4j2是一个基于Java的日志记录工具.由于Apache Log4j2某些功能存在递归解析功能,攻击者可直接构造恶 ...
- iOS开发——密码存储之keychain的使用
iOS的keychain服务提供了一种安全的保存私密信息(密码,序列号,证书等)的方式.每个ios程序都有一个独立的keychain存储.从ios 3.0开始,跨程序分享keychain变得可行. 下 ...
- 如何基于 Docker 快速搭建 Springboot + Mysql + Redis 项目
目录 前言 项目目录 搭建项目 1. docker安装启动mysql以及redis 1.1 安装mysql 1.2 安装redis 2. 初始化数据库 3.创建项目 4.初始化代码 4.1 全局配置文 ...
- 一个使用 asyncio 开发的网络爬虫(译文)
原文地址:https://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html 作者简介 A. Jesse Jiryu ...