Rezende D., Mohamed S. Variational Inference with Normalizing Flow. ICML, 2015.

VAE的先验分布很重要, 但是后验分布也很重要, 我们常常假设\(q_{\phi}(z|x)\)满足一个高斯分布, 这就大大限制了近似后验分布的逼近的准确性.

这番假设实在是过于强烈了.

本文提出的 normalizing flows的方法可以提高\(q_{\phi}\)的逼近能力.

主要内容

首先, 假设我们得到了\(q_{0}(z_0|x)\)(通过重采样得到\(z\)), 此时我们通过一个可逆函数\(f\), 得到

\[z_1 = f(z_0),
\]

则\(z_1\)的分布满足:

\[q(z_1) = q(z_0) |\mathrm{det} \nabla_z f^{-1}| = q(z_0) |\mathrm{det} \nabla f|^{-1}.
\]

以此类推可得:

\[z_K = f_K \circ \cdots \circ f_2 \circ f_1(z_0), \\
\ln q_K(z_K) = \ln q_0(z_0) - \sum_{k=1}^K \ln |\mathrm{det} \nabla_{z_{k-1}} f_k|.
\]

也就是说, 只要我们能计算出Jacobian行列式, 那么后验分布的近似能力就大大提高了.

此时ELBO的负数形式为:

\[\begin{array}{ll}
\mathcal{F}(x)
&= \mathbb{E}_{q_{\phi}(z|x)}[\ln q_{\phi}(z|x) - \ln p_{\theta}(x,z)] \\
&= \mathbb{E}_{q_{0}(z_0)}[\ln q_{K}(z_K) - \ln p_{\theta}(x,z_K)] \\
&= \mathbb{E}_{q_0(z_0)}[\ln q_0(z_0)] - \mathbb{E}_{q_0(z_0)}[\sum_{k=1}^K\ln |\mathrm{det} \nabla_{z_{k-1}} f_k|] \\
& + \mathbb{E}_{q_0(z_0)} [\ln p_{\theta}(x,z_K)].
\end{array}
\]

注:因为最后一项和\(q_K\)无关, 可以由采样直接近似.

一些合适的可逆变换

\[f(z) = z + u h(w^Tz + b),
\]

其中\(h\)是一个非线性的激活函数. 则

\[\psi(z) = h'(w^Tz+b)w \\
|\mathrm{det} \nabla_z f| = |1 + u^T \psi(z)|.
\]
\[f(z) = z + \beta \cdot h(\alpha, \gamma)(z-z_0), \\
\gamma = |z - z_0|, h(\alpha, \gamma) = 1/ (\alpha + \gamma).
\]

此时

\[|\mathrm{det} \nabla_z f| = [1 + \beta h(\alpha, \gamma)]^{d-1}[1+\beta h(\alpha, \gamma) + \beta h'(\alpha, \gamma) \gamma].
\]

其中\(d\)是\(z\)的维度.

代码

非官方代码

Variational Inference with Normalizing Flow的更多相关文章

  1. Improved Variational Inference with Inverse Autoregressive Flow

    目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...

  2. Improving Variational Auto-Encoders using Householder Flow

    目录 概 主要内容 代码 Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. N ...

  3. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference

    涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...

  4. [Bayes] Variational Inference for Bayesian GMMs

    为了世界和平,为了心知肚明,决定手算一次 Variational Inference for Bayesian GMMs 目的就是达到如下的智能效果,扔进去六个高斯,最后拟合结果成了两个高斯,当然,其 ...

  5. 变分推断(Variational Inference)

    (学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...

  6. Variational Inference

    作者:孙九爷链接:https://www.zhihu.com/question/41765860/answer/101915528来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  7. 变分推断(Variational Inference)

    变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...

  8. Neural ODE相关论文摘要翻译

    *****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...

  9. (zhuan) Variational Autoencoder: Intuition and Implementation

    Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...

随机推荐

  1. Vue函数防抖和函数节流

    函数防抖(debounce) 应用场景 登录.发短信等按钮避免用户点击太快,以致于发送了多次请求,需要防抖 调整浏览器窗口大小时,resize 次数过于频繁,造成计算过多,此时需要一次到位,就用到了防 ...

  2. Kafka 架构深入

    Kafka 工作流程及文件存储机制

  3. 容器的分类与各种测试(三)——deque

    deque是双端队列,其表象看起来是可以双端扩充,但实际上是通过内存映射管理来营造可以双端扩充的假象,如图所示 比如,用户将最左端的buff用光时,map会自动向左扩充,继续申请并映射一个新的buff ...

  4. C++之数组转换

    题目如下: 这道题经过好久的思考也没找到能一次性输入两组数的方法,只能一次性处理一组数,所以就把代码放上来,欢迎交流留言一起讨论可以放两组数的方法~(QQ 841587906) 1 #include ...

  5. DP-Burst Balloons

    leetcode312: https://leetcode.com/problems/burst-balloons/#/description Given n balloons, indexed fr ...

  6. 如何在Swagger2或Swagger3中增加Json Web Token

    1. 前言 Swagger 3.0已经发布有一段时间了,作为一个非常有用的文档工具已经越来越多的项目在使用它.而JWT也是目前前后端分离最常用的安全技术.那么如何在Swagger 3.0 中添加JWT ...

  7. oracle 存储过程及REF CURSOR的使用

    基本使用方法及示例 1.基本结构: CREATE OR REPLACE PROCEDURE 存储过程名字 (参数1 IN NUMBER,参数2 IN NUMBER) AS 变量1 INTEGER := ...

  8. static JAVA

    static 关键字:使用static修饰的变量是类变量,属于该类本身,没有使用static修饰符的成员变量是实例变量,属于该类的实例.由于同一个JVM内只对应一个Class对象,因此同一个JVM内的 ...

  9. spring-boot aop 增删改操作日志 实现

    1.注解接口:import com.github.wxiaoqi.security.common.constant.Constants; import java.lang.annotation.*; ...

  10. JS中操作JSON总结

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意 ...