Rezende D., Mohamed S. Variational Inference with Normalizing Flow. ICML, 2015.

VAE的先验分布很重要, 但是后验分布也很重要, 我们常常假设\(q_{\phi}(z|x)\)满足一个高斯分布, 这就大大限制了近似后验分布的逼近的准确性.

这番假设实在是过于强烈了.

本文提出的 normalizing flows的方法可以提高\(q_{\phi}\)的逼近能力.

主要内容

首先, 假设我们得到了\(q_{0}(z_0|x)\)(通过重采样得到\(z\)), 此时我们通过一个可逆函数\(f\), 得到

\[z_1 = f(z_0),
\]

则\(z_1\)的分布满足:

\[q(z_1) = q(z_0) |\mathrm{det} \nabla_z f^{-1}| = q(z_0) |\mathrm{det} \nabla f|^{-1}.
\]

以此类推可得:

\[z_K = f_K \circ \cdots \circ f_2 \circ f_1(z_0), \\
\ln q_K(z_K) = \ln q_0(z_0) - \sum_{k=1}^K \ln |\mathrm{det} \nabla_{z_{k-1}} f_k|.
\]

也就是说, 只要我们能计算出Jacobian行列式, 那么后验分布的近似能力就大大提高了.

此时ELBO的负数形式为:

\[\begin{array}{ll}
\mathcal{F}(x)
&= \mathbb{E}_{q_{\phi}(z|x)}[\ln q_{\phi}(z|x) - \ln p_{\theta}(x,z)] \\
&= \mathbb{E}_{q_{0}(z_0)}[\ln q_{K}(z_K) - \ln p_{\theta}(x,z_K)] \\
&= \mathbb{E}_{q_0(z_0)}[\ln q_0(z_0)] - \mathbb{E}_{q_0(z_0)}[\sum_{k=1}^K\ln |\mathrm{det} \nabla_{z_{k-1}} f_k|] \\
& + \mathbb{E}_{q_0(z_0)} [\ln p_{\theta}(x,z_K)].
\end{array}
\]

注:因为最后一项和\(q_K\)无关, 可以由采样直接近似.

一些合适的可逆变换

\[f(z) = z + u h(w^Tz + b),
\]

其中\(h\)是一个非线性的激活函数. 则

\[\psi(z) = h'(w^Tz+b)w \\
|\mathrm{det} \nabla_z f| = |1 + u^T \psi(z)|.
\]
\[f(z) = z + \beta \cdot h(\alpha, \gamma)(z-z_0), \\
\gamma = |z - z_0|, h(\alpha, \gamma) = 1/ (\alpha + \gamma).
\]

此时

\[|\mathrm{det} \nabla_z f| = [1 + \beta h(\alpha, \gamma)]^{d-1}[1+\beta h(\alpha, \gamma) + \beta h'(\alpha, \gamma) \gamma].
\]

其中\(d\)是\(z\)的维度.

代码

非官方代码

Variational Inference with Normalizing Flow的更多相关文章

  1. Improved Variational Inference with Inverse Autoregressive Flow

    目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...

  2. Improving Variational Auto-Encoders using Householder Flow

    目录 概 主要内容 代码 Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. N ...

  3. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference

    涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...

  4. [Bayes] Variational Inference for Bayesian GMMs

    为了世界和平,为了心知肚明,决定手算一次 Variational Inference for Bayesian GMMs 目的就是达到如下的智能效果,扔进去六个高斯,最后拟合结果成了两个高斯,当然,其 ...

  5. 变分推断(Variational Inference)

    (学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...

  6. Variational Inference

    作者:孙九爷链接:https://www.zhihu.com/question/41765860/answer/101915528来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  7. 变分推断(Variational Inference)

    变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...

  8. Neural ODE相关论文摘要翻译

    *****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...

  9. (zhuan) Variational Autoencoder: Intuition and Implementation

    Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...

随机推荐

  1. binlog真的是银弹吗?有些时候也让人头疼

    大家好,我是架构摆渡人.这是实践经验系列的第三篇文章,这个系列会给大家分享很多在实际工作中有用的经验,如果有收获,还请分享给更多的朋友. binlog 用于记录用户对数据库操作的SQL语句信息,同时主 ...

  2. 日常Java 2021/11/4

    ServerSocket类的方法服务器应用程序通过使用java.net.ServerSocket类以获取一个端口,并且侦听客户端请求. 构造方法: public ServerSocket(int po ...

  3. FileReader (三) - 网页拖拽并预显示图片简单实现

    以下是一个很贱很简单的一个 在网页上图拽图片并预显示的demo. 我是从https://developer.mozilla.org/en-US/docs/Web/API/FileReader#Stat ...

  4. 剑指 Offer 10- I. 斐波那契数列

    写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N)).斐波那契数列的定义如下: F(0) = 0,   F(1) = 1F(N) = F(N - 1) + F(N ...

  5. Docker学习(一)——安装docker

    Suse12上安装docker   对于suse13.2之后的版本,因为docker已经被添加到了suse仓库中,直接使用sudo zypper install docker即可.   suse12不 ...

  6. HelloWorldMBean

    package mbeanTest; public interface HelloWorldMBean { public String getHello(); public void setHello ...

  7. JAVA平台AOP技术研究

    3.1 Java平台AOP技术概览 3.1.1 AOP技术在Java平台中的应用 AOP在实验室应用和商业应用上,Java平台始终走在前面.从最初也是目前最成熟的AOP工具--AspectJ,到目前已 ...

  8. 【Linux卷管理】LVM创建与管理

    安装LVM 首先确定系统中是否安装了lvm工具: [root@jetsen ~]# rpm -qa|grep lvm system-config-lvm-1.1.5-1.0.el5 lvm2-2.02 ...

  9. 【C/C++】编码(腾讯)

    假定一种编码的编码范围是a ~ y的25个字母,从1位到4位的编码,如果我们把该编码按字典序排序,形成一个数组如下: a, aa, aaa, aaaa, aaab, aaac, - -, b, ba, ...

  10. 为什么kafka和zk总是在一起?

    一.概念 发布订阅,一个发布者发布到消息,所有订阅者都可以接收到 生产消费,一个消息对象只能被一个消费者消费 kafka是生产者,zookeeper是消费者 有3个微服务,聚合形成一个统一的业务层 但 ...