Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks.

本文提出一种distillation model, 能够免疫大部分的adversarial attacks, 具有良好的鲁棒性, 同时容易训练.

主要内容

符号 说明
\(F(\cdot)\) 神经网络, 且\(F(X)=\mathrm{softmax^*}(Z(X))\).
\(X \in \mathcal{X}\) 样本
\(Y\) 样本对应的标签
\(F^d\) distilled network
\(T\) temperature

注: 这里的\(\mathrm{softmax}^*(z)_i:=\frac{e^{z_i/T}}{\sum_j e^{e_j/T}}, i= 0,\ldots, N-1\);

注: \(F^d\)与\(F\)网络结构一样;

算法

Input: \(T\),训练数据\((X,Y)\).

  • 在训练数据\((X, Y)\)上训练得到\(F\);
  • 得到新的训练数据\((X, F(X))\);
  • 利用\((X, F(X))\)训练\(F^d\);
  • 修改\(F^d\)的最后一层\(T=1\).

Output: \(F^d\).

为什么这个算法是有效的呢?

  1. 训练\(F^d\)用的标签是概率向量\(F(X)\), 拿数字举例, 如果写的草一点\(7\)和\(1\)是很相近的, 但如果训练的标签是\((0,0,0,0,0,0,1,0,0,0)\)的话反而不符合实际, 会导致不稳定;
  2. 当\(T\)比较大的时候(训练):
\[\frac{\partial F_i(X)}{\partial X_j}|_T = \frac{1}{T}\frac{e^{z_i / T}}{g^2(X)}\big( \sum_{l=1^N}(\frac{\partial z_i}{\partial X_j}-\frac{\partial z_l}{\partial X_j})e^{z_l /T}\big),
\]

会比较小, 其中\(g(X)=\sum_{l=0}^{N-1} e^{z_l(X)/T}\).

3. 在测试的时候, 我们令\(T=1\), 假设\(X\)在原先情况下\(z_1/T\)最大, \(z_2/T\)次大, 则

\[\epsilon=z_2/T-z_1/T= 0 + \mathbf{Tr}(\mathcal{G}^T \delta X) + o(\delta x),
\]

\[T\epsilon=z_2-z_1= 0 + T \cdot \mathbf{Tr}(\mathcal{G}^T \delta X) + o(\delta x),
\]

其中\(\mathcal{G}\)为\(z_2-z_1\)在\(X\)处的负梯度.

一些有趣的指标

鲁棒性定义

\[\rho_{adv}(F)= E_{\mu}[\Delta_{adv}(X,F)],
\]

其中\(\mu\)为样本的分布

\[\Delta_{adv}(X,F) = \arg \min_{\delta X} \{ \| \delta X\| : F(X+\delta X) \not = F(X) \}.
\]

可采用下式来实际估计

\[\rho_{adv}(F) \approx \frac{1}{|\mathcal{X}|} \sum_{X \in \mathcal{X}} \min _{\delta X} \|\delta X\|.
\]

合格的抗干扰机制

  1. 对原有结构有较少的影响;
  2. 网络对干净数据因具有相当的正确率;
  3. 较好的训练速度;
  4. 对\(\| \delta X\|\)较小的情况能够免疫干扰.

原文还有一个理论分析, 但我认为不重要, 略过.

import torch.nn as nn

class Tsoftmax(nn.Module):

    def __init__(self, T=100):
super(Tsoftmax, self).__init__()
self.T = T def forward(self, x):
if self.train():
return nn.functional.softmax(x / self.T)
else:
return nn.functional.softmax(x)

Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的更多相关文章

  1. Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks

    目录 概 主要内容 Mustafa A., Khan S., Hayat M., Goecke R., Shen J., Shao L., Adversarial Defense by Restric ...

  2. Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...

  3. Limitations of the Lipschitz constant as a defense against adversarial examples

    目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...

  4. A New Defense Against Adversarial Images: Turning a Weakness into a Strength

    目录 概 主要内容 准则1 准则2 总策略 Hu S, Yu T, Guo C, et al. A New Defense Against Adversarial Images: Turning a ...

  5. Universal adversarial perturbations

    目录 概 主要内容 算法 实验部分 实验1 实验2 实验3 代码 Moosavidezfooli S, Fawzi A, Fawzi O, et al. Universal Adversarial P ...

  6. 《C-RNN-GAN: Continuous recurrent neural networks with adversarial training》论文笔记

    出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data, ...

  7. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

  8. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  9. (转)Awesome Knowledge Distillation

    Awesome Knowledge Distillation 2018-07-19 10:38:40  Reference:https://github.com/dkozlov/awesome-kno ...

随机推荐

  1. 疯了吧!这帮人居然用 Go 写“前端”?(一)

    作者 | 郑嘉涛(羣青) 来源 | 尔达 Erda 公众号 ​ 无一例外,谈到前后端分离"必定"是 RESTful API,算是定式了.但我们知道 REST 在资源划分上的设计总是 ...

  2. Flume(四)【配置文件总结】

    目录 一.Agent 二.Source taildir arvo netstat exec spooldir 三.Sink hdfs kafka(待续) hbase(待续) arvo logger 本 ...

  3. 网口程序udp

    # -*- coding: utf-8 -*- """ Created on Thu Nov 12 15:02:53 2020 @author: Administrato ...

  4. python下载openpyxl

    直接下载openpyxl报错 ERROR: Command errored out with exit status 1: python setup.py egg_info Check the log ...

  5. 转 【Android】- Android与html5交互操作

    转自:https://blog.csdn.net/baidu_35701759/article/details/70314812 1. Android提供了WebView控件可访问网页 通过webVi ...

  6. jenkins之授权和权限管理

    #:创建角色,给角色授权,然后创建用户,将用户加入到角色(前提先安装插件) #:先将之前的卸载掉 #:然后重启服务,在可选插件搜索Role #:装完重启服务 root@ubuntu:~# system ...

  7. Linux基础命令---httpd守护进程

    httpd httpd是apache超文本传输协议的主程序,它被设计成一个独立运行的守护进程.httpd会建立一个线程池来处理http请求. 此命令的适用范围:RedHat.RHEL.Ubuntu.C ...

  8. jQuery全局进行方法扩展

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>01 ...

  9. Maven的聚合工程(多模块工程)

    在开发2个以上模块的时候,每个模块都是一个 Maven Project.比如搜索平台,学习平台,考试平台.开发的时候可以自己管自己独立编译,测试,运行.但如果想要将他们整合起来,我们就需要一个聚合工程 ...

  10. 深度学习初探——符号式编程、框架、TensorFlow

    一.命令式编程(imperative)和符号式编程(symblic) 命令式: import numpy as np a = np.ones(10) b = np.ones(10) * 2 c = b ...