Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
概
本文提出一种distillation model, 能够免疫大部分的adversarial attacks, 具有良好的鲁棒性, 同时容易训练.
主要内容

| 符号 | 说明 |
|---|---|
| \(F(\cdot)\) | 神经网络, 且\(F(X)=\mathrm{softmax^*}(Z(X))\). |
| \(X \in \mathcal{X}\) | 样本 |
| \(Y\) | 样本对应的标签 |
| \(F^d\) | distilled network |
| \(T\) | temperature |
注: 这里的\(\mathrm{softmax}^*(z)_i:=\frac{e^{z_i/T}}{\sum_j e^{e_j/T}}, i= 0,\ldots, N-1\);
注: \(F^d\)与\(F\)网络结构一样;
算法
Input: \(T\),训练数据\((X,Y)\).
- 在训练数据\((X, Y)\)上训练得到\(F\);
- 得到新的训练数据\((X, F(X))\);
- 利用\((X, F(X))\)训练\(F^d\);
- 修改\(F^d\)的最后一层\(T=1\).
Output: \(F^d\).
为什么这个算法是有效的呢?
- 训练\(F^d\)用的标签是概率向量\(F(X)\), 拿数字举例, 如果写的草一点\(7\)和\(1\)是很相近的, 但如果训练的标签是\((0,0,0,0,0,0,1,0,0,0)\)的话反而不符合实际, 会导致不稳定;
- 当\(T\)比较大的时候(训练):
\]
会比较小, 其中\(g(X)=\sum_{l=0}^{N-1} e^{z_l(X)/T}\).
3. 在测试的时候, 我们令\(T=1\), 假设\(X\)在原先情况下\(z_1/T\)最大, \(z_2/T\)次大, 则
\]
则
\]
其中\(\mathcal{G}\)为\(z_2-z_1\)在\(X\)处的负梯度.
一些有趣的指标
鲁棒性定义
\]
其中\(\mu\)为样本的分布
\]
可采用下式来实际估计
\]
合格的抗干扰机制
- 对原有结构有较少的影响;
- 网络对干净数据因具有相当的正确率;
- 较好的训练速度;
- 对\(\| \delta X\|\)较小的情况能够免疫干扰.
原文还有一个理论分析, 但我认为不重要, 略过.
import torch.nn as nn
class Tsoftmax(nn.Module):
def __init__(self, T=100):
super(Tsoftmax, self).__init__()
self.T = T
def forward(self, x):
if self.train():
return nn.functional.softmax(x / self.T)
else:
return nn.functional.softmax(x)
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的更多相关文章
- Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
目录 概 主要内容 Mustafa A., Khan S., Hayat M., Goecke R., Shen J., Shao L., Adversarial Defense by Restric ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
- Limitations of the Lipschitz constant as a defense against adversarial examples
目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...
- A New Defense Against Adversarial Images: Turning a Weakness into a Strength
目录 概 主要内容 准则1 准则2 总策略 Hu S, Yu T, Guo C, et al. A New Defense Against Adversarial Images: Turning a ...
- Universal adversarial perturbations
目录 概 主要内容 算法 实验部分 实验1 实验2 实验3 代码 Moosavidezfooli S, Fawzi A, Fawzi O, et al. Universal Adversarial P ...
- 《C-RNN-GAN: Continuous recurrent neural networks with adversarial training》论文笔记
出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data, ...
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- (转)Awesome Knowledge Distillation
Awesome Knowledge Distillation 2018-07-19 10:38:40 Reference:https://github.com/dkozlov/awesome-kno ...
随机推荐
- 疯了吧!这帮人居然用 Go 写“前端”?(一)
作者 | 郑嘉涛(羣青) 来源 | 尔达 Erda 公众号 无一例外,谈到前后端分离"必定"是 RESTful API,算是定式了.但我们知道 REST 在资源划分上的设计总是 ...
- Flume(四)【配置文件总结】
目录 一.Agent 二.Source taildir arvo netstat exec spooldir 三.Sink hdfs kafka(待续) hbase(待续) arvo logger 本 ...
- 网口程序udp
# -*- coding: utf-8 -*- """ Created on Thu Nov 12 15:02:53 2020 @author: Administrato ...
- python下载openpyxl
直接下载openpyxl报错 ERROR: Command errored out with exit status 1: python setup.py egg_info Check the log ...
- 转 【Android】- Android与html5交互操作
转自:https://blog.csdn.net/baidu_35701759/article/details/70314812 1. Android提供了WebView控件可访问网页 通过webVi ...
- jenkins之授权和权限管理
#:创建角色,给角色授权,然后创建用户,将用户加入到角色(前提先安装插件) #:先将之前的卸载掉 #:然后重启服务,在可选插件搜索Role #:装完重启服务 root@ubuntu:~# system ...
- Linux基础命令---httpd守护进程
httpd httpd是apache超文本传输协议的主程序,它被设计成一个独立运行的守护进程.httpd会建立一个线程池来处理http请求. 此命令的适用范围:RedHat.RHEL.Ubuntu.C ...
- jQuery全局进行方法扩展
<!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>01 ...
- Maven的聚合工程(多模块工程)
在开发2个以上模块的时候,每个模块都是一个 Maven Project.比如搜索平台,学习平台,考试平台.开发的时候可以自己管自己独立编译,测试,运行.但如果想要将他们整合起来,我们就需要一个聚合工程 ...
- 深度学习初探——符号式编程、框架、TensorFlow
一.命令式编程(imperative)和符号式编程(symblic) 命令式: import numpy as np a = np.ones(10) b = np.ones(10) * 2 c = b ...