对于一个分数x/y(x和y互素),在k进制下为纯循环当且仅当y和k互素
证明:任意一个分数都可以写成0.abbbbbbbb的形式(不妨假设a尽量短),设a的位数为l1,b的位数为l2,那么原分数即$\frac {b-a}{(k^{l2}-1)*k^{l1}}$
必要性:当l1=0的时候分母与k互素,即纯循环推出了y与k互素
充分性:反证法,设存在使得$l1>0$且$k^{l1}|b-a$,那么必然有$k|b-a$,也就是b和a的最后一位相同,那么可以将a的最后一位与b的前l2-1位组成新的循环节,与a最短的假设不成立
考虑如何计算:$\sum_{1\le i\le m}[(i,k)==1]\sum_{1\le j \le n}[(i,j)==1]$
先对后半部分莫反并提到前面,即$\sum_{t=1}^{m}[(t,k)==1]*(n/t)*\mu(t)\sum_{i=1}^{m/t}[(i,k)==1]$
考虑对于最后一个式子,设$f(n)=\sum_{i=1}^{n}[(i,k)==1]$,可以用$f(i)=(i/k)*f(k)+f(i\ mod\ k)$来求(预处理前k个值)
对其数论分块,即$\sum_{m/t,n/t}f(m/t)*(n/t)\sum_{t=l}^{r}[(t,k)==1]*\mu(t)$
再令$g(n,k)=\sum_{i=1}^{n}[(i,k)==1]*\mu(i)$,考虑快速递推计算g
对于k的任意质因子p,设$k=p^{t}*q$(p和q互素),那么$[(i,k)==1]=[(i,q)==1]-[(i,q)==1]*[p|i]$
把这个代入原式,即$g(n,k)=g(n,q)-\sum_{i=1}^{n/p}[(i,q)==1]*\mu(ip)$
由于当i与p不互素时$\mu(ip)=0$,因此添加条件$(i,p)=1$,$原式=g(n,q)-\sum_{i=1}^{n/p}[(i,q)==1]*[(i,p)==1]*\mu(i)*\mu(p)$
对该式化简(提出$\mu(p)=-1$,i与q和p都互素等价于(i,qp)=1),最终就得到$g(n,k)=g(n,q)+g(n/p,k)$
考虑递归,由于第一维和第二维的取值都只有$\sqrt{n}$和$\sqrt{k}$种,存下来即可(第一维用hash),递归边界条件为:1.当$n=0$时结果为0;2.当$k=1$时结果为莫比乌斯函数的前缀和,杜教筛即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 #define N 10000005
5 map<int,int>id;
6 map<int,int>sum;
7 int V,n,m,k,f[2005],a[11],vis[N],p[N],mu[N];
8 ll ans,g[N/10][11];
9 int gcd(int x,int y){
10 if (!y)return x;
11 return gcd(y,x%y);
12 }
13 void pre(){
14 mu[1]=1;
15 for(int i=2;i<N-4;i++){
16 if (!vis[i]){
17 p[++p[0]]=i;
18 mu[i]=-1;
19 }
20 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
21 vis[i*p[j]]=1;
22 if (i%p[j]==0){
23 mu[i*p[j]]=0;
24 break;
25 }
26 mu[i*p[j]]=-mu[i];
27 }
28 }
29 for(int i=1;i<N-4;i++)mu[i]+=mu[i-1];
30 for(int i=1;i<=k;i++)f[i]=f[i-1]+(gcd(i,k)==1);
31 for(int i=1;i<=p[0];i++)
32 if (k%p[i]==0)a[++a[0]]=p[i];
33 }
34 int calc_f(int t){
35 return f[k]*(t/k)+f[t%k];
36 }
37 int djs(int k){
38 if (k<N-4)return mu[k];
39 if (sum[k])return sum[k];
40 int ans=1;
41 for(int i=2,j;i<=k;i=j+1){
42 j=k/(k/i);
43 ans-=(j-i+1)*djs(k/i);
44 }
45 return sum[k]=ans;
46 }
47 ll calc_g(int n,int p){
48 if ((n<2)||(!p))return djs(n);
49 if (!id[n])id[n]=++V;
50 int x=id[n];
51 if (g[x][p])return g[x][p];
52 return g[x][p]=calc_g(n,p-1)+calc_g(n/a[p],p);
53 }
54 int main(){
55 scanf("%d%d%d",&n,&m,&k);
56 pre();
57 for(int i=1,j;i<=min(n,m);i=j+1){
58 j=min(n/(n/i),m/(m/i));
59 ans+=(calc_g(j,a[0])-calc_g(i-1,a[0]))*calc_f(m/i)*(n/i);
60 }
61 printf("%lld",ans);
62 }

[bzoj4652]循环之美的更多相关文章

  1. 【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)

    [BZOJ4652]循环之美(莫比乌斯反演,杜教筛) 题解 到底在求什么呢... 首先不管他\(K\)进制的问题啦,真是烦死啦 所以,相当于有一个分数\(\frac{i}{j}\) 因为值要不相等 所 ...

  2. [UOJ#221][BZOJ4652][Noi2016]循环之美

    [UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...

  3. UOJ #221 【NOI2016】 循环之美

    题目链接:循环之美 这道题感觉非常优美--能有一个这么优美的题面和较高的思维难度真的不容易-- 为了表示方便,让我先讲一下两个符号.\([a]\)表示如果\(a\)为真,那么返回\(1\),否则返回\ ...

  4. LibreOJ2085 - 「NOI2016」循环之美

    Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x} ...

  5. 「NOI2016」循环之美

    P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就 ...

  6. 「NOI2016」循环之美 解题报告

    「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足 ...

  7. luogu 1587 [NOI2016]循环之美

    LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...

  8. bzoj4652 [Noi2016]循环之美

    Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...

  9. BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)

    Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k  进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...

随机推荐

  1. WIN10下的VMware与Docker冲突的解决方案

    VMARE版本升级到15.5以上 WIN10升级到2004版本以上 Hyper-V为开启状态

  2. SQL SERVER数据库权限分配

    1,新建 只能访问某一个表的只读用户. --添加只允许访问指定表的用户:         exec     sp_addlogin     '用户名','密码','默认数据库名'           ...

  3. python中列表和元组的区别

    列表(list)特点: 1.可变类型且有序的,有索引值. 元组特点: 1.不可变类型且有序的,通过下标索引值访问 2.元组里面只有一个元素的时候该元组类型就是这个元素的类型.例如:t=(1) t的类型 ...

  4. mysql group by语句流程是怎么样的

    group by流程是怎么样的 注意点: select id%10 as m, count(*) as c from t1 group by m; group by是用于对数据进行分组,我们排序用到了 ...

  5. NX 图标

    vector_on_curve   crosscut_zig_zag_with_lifts vector_along_curve   zlevel_zig add_new_sc   zlevel_zi ...

  6. HttpRunner3.X - 实现参数化驱动

    一.前言 HttpRunner3.X支持三种方式的参数化,参数名称的定义分为两种情况: 独立参数单独进行定义: 多个参数具有关联性的参数需要将其定义在一起,采用短横线(-)进行连接. 数据源指定支持三 ...

  7. 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她

    原文链接: 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她 上篇文章 gRPC,爆赞 直接爆了,内容主要包括:简单的 gRPC 服务,流处理模式,验证器,Token 认证和证书认证. 在多 ...

  8. 【二食堂】Beta - 事后分析

    事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? Beta阶段我们首先要对文本标注方式进行优化,其次时添加好友系统,实现邀请好友共同标注的功能. ...

  9. BUAA软件工程个人项目作业

    BUAA软件工程个人项目作业 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人项目作业 我在这个课程的目标是 学习软件开发的流程 这个作业在哪 ...

  10. OO前三次作业思考(第一次OO——Blog)

    OO前三次作业总结 基于度量分析程序结构 由于三次作业较多,决定分析内容.功能最为复杂的第三次作业. 上图为第三次作业的类图.我使用了一个抽象类Factor,写了五个因子继承Factor,然后又单独开 ...