[bzoj4652]循环之美
对于一个分数x/y(x和y互素),在k进制下为纯循环当且仅当y和k互素
证明:任意一个分数都可以写成0.abbbbbbbb的形式(不妨假设a尽量短),设a的位数为l1,b的位数为l2,那么原分数即$\frac {b-a}{(k^{l2}-1)*k^{l1}}$
必要性:当l1=0的时候分母与k互素,即纯循环推出了y与k互素
充分性:反证法,设存在使得$l1>0$且$k^{l1}|b-a$,那么必然有$k|b-a$,也就是b和a的最后一位相同,那么可以将a的最后一位与b的前l2-1位组成新的循环节,与a最短的假设不成立
考虑如何计算:$\sum_{1\le i\le m}[(i,k)==1]\sum_{1\le j \le n}[(i,j)==1]$
先对后半部分莫反并提到前面,即$\sum_{t=1}^{m}[(t,k)==1]*(n/t)*\mu(t)\sum_{i=1}^{m/t}[(i,k)==1]$
考虑对于最后一个式子,设$f(n)=\sum_{i=1}^{n}[(i,k)==1]$,可以用$f(i)=(i/k)*f(k)+f(i\ mod\ k)$来求(预处理前k个值)
对其数论分块,即$\sum_{m/t,n/t}f(m/t)*(n/t)\sum_{t=l}^{r}[(t,k)==1]*\mu(t)$
再令$g(n,k)=\sum_{i=1}^{n}[(i,k)==1]*\mu(i)$,考虑快速递推计算g
对于k的任意质因子p,设$k=p^{t}*q$(p和q互素),那么$[(i,k)==1]=[(i,q)==1]-[(i,q)==1]*[p|i]$
把这个代入原式,即$g(n,k)=g(n,q)-\sum_{i=1}^{n/p}[(i,q)==1]*\mu(ip)$
由于当i与p不互素时$\mu(ip)=0$,因此添加条件$(i,p)=1$,$原式=g(n,q)-\sum_{i=1}^{n/p}[(i,q)==1]*[(i,p)==1]*\mu(i)*\mu(p)$
对该式化简(提出$\mu(p)=-1$,i与q和p都互素等价于(i,qp)=1),最终就得到$g(n,k)=g(n,q)+g(n/p,k)$
考虑递归,由于第一维和第二维的取值都只有$\sqrt{n}$和$\sqrt{k}$种,存下来即可(第一维用hash),递归边界条件为:1.当$n=0$时结果为0;2.当$k=1$时结果为莫比乌斯函数的前缀和,杜教筛即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 #define N 10000005
5 map<int,int>id;
6 map<int,int>sum;
7 int V,n,m,k,f[2005],a[11],vis[N],p[N],mu[N];
8 ll ans,g[N/10][11];
9 int gcd(int x,int y){
10 if (!y)return x;
11 return gcd(y,x%y);
12 }
13 void pre(){
14 mu[1]=1;
15 for(int i=2;i<N-4;i++){
16 if (!vis[i]){
17 p[++p[0]]=i;
18 mu[i]=-1;
19 }
20 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
21 vis[i*p[j]]=1;
22 if (i%p[j]==0){
23 mu[i*p[j]]=0;
24 break;
25 }
26 mu[i*p[j]]=-mu[i];
27 }
28 }
29 for(int i=1;i<N-4;i++)mu[i]+=mu[i-1];
30 for(int i=1;i<=k;i++)f[i]=f[i-1]+(gcd(i,k)==1);
31 for(int i=1;i<=p[0];i++)
32 if (k%p[i]==0)a[++a[0]]=p[i];
33 }
34 int calc_f(int t){
35 return f[k]*(t/k)+f[t%k];
36 }
37 int djs(int k){
38 if (k<N-4)return mu[k];
39 if (sum[k])return sum[k];
40 int ans=1;
41 for(int i=2,j;i<=k;i=j+1){
42 j=k/(k/i);
43 ans-=(j-i+1)*djs(k/i);
44 }
45 return sum[k]=ans;
46 }
47 ll calc_g(int n,int p){
48 if ((n<2)||(!p))return djs(n);
49 if (!id[n])id[n]=++V;
50 int x=id[n];
51 if (g[x][p])return g[x][p];
52 return g[x][p]=calc_g(n,p-1)+calc_g(n/a[p],p);
53 }
54 int main(){
55 scanf("%d%d%d",&n,&m,&k);
56 pre();
57 for(int i=1,j;i<=min(n,m);i=j+1){
58 j=min(n/(n/i),m/(m/i));
59 ans+=(calc_g(j,a[0])-calc_g(i-1,a[0]))*calc_f(m/i)*(n/i);
60 }
61 printf("%lld",ans);
62 }
[bzoj4652]循环之美的更多相关文章
- 【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)
[BZOJ4652]循环之美(莫比乌斯反演,杜教筛) 题解 到底在求什么呢... 首先不管他\(K\)进制的问题啦,真是烦死啦 所以,相当于有一个分数\(\frac{i}{j}\) 因为值要不相等 所 ...
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- UOJ #221 【NOI2016】 循环之美
题目链接:循环之美 这道题感觉非常优美--能有一个这么优美的题面和较高的思维难度真的不容易-- 为了表示方便,让我先讲一下两个符号.\([a]\)表示如果\(a\)为真,那么返回\(1\),否则返回\ ...
- LibreOJ2085 - 「NOI2016」循环之美
Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x} ...
- 「NOI2016」循环之美
P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就 ...
- 「NOI2016」循环之美 解题报告
「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
随机推荐
- PaddlePaddle:在 Serverless 架构上十几行代码实现 OCR 能力
飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发.功能完备. 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架.基础模型库.端到端开发 ...
- LeetCode352 将数据流变为多个不相交区间
LeetCode352 将数据流变为多个不相交区间 1 题目 给你一个由非负整数 a1, a2, ..., an 组成的数据流输入,请你将到目前为止看到的数字总结为不相交的区间列表. 实现 Summa ...
- Polya 定理 学习笔记
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...
- Java(26)集合一Collection
来源:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228419.html 博客主页:https://www.cnblogs.com/testero ...
- 全场景效能平台猪齿鱼常用的前端css实现方案
居中 最常用的height + line-height,以及margin:0 auto的居中方式就不再阐述,以下介绍两种容错性高的实现方案. flex布局实现 猪齿鱼前端日常开发中,我们多以f ...
- SPI在JDBC中的运用
前言 之前学习了JDK SPI的机制,本文专门讨论2个内容: 1.为什么在使用SPI后,不需要Class.forName()了? 2.SPI在JDBC中的运用. JDBC模板代码 private st ...
- 【UE4】GAMES101 图形学作业3:Blinn-Phong 模型与着色
总览 在这次编程任务中,我们会进一步模拟现代图形技术.我们在代码中添加了Object Loader(用于加载三维模型), Vertex Shader 与Fragment Shader,并且支持了纹理映 ...
- 【UE4 调试】提升UE4源码版本Setup下载速度
更改setup.bat部分参数
- hystrix的配置说明
在我们的日常开发中,有些时候需要和第三方系统进行对接操作,或者调用其他系统的 api 接口,但是我们不能保证这些第三方系统的接口一定是稳定的,当系统中产生大量的流量来访问这些第三方接口,这些第三方系统 ...
- js基础学习之"=="与"==="的区别
var a = 1; var b = 1; var c = "1"; 1. "==" 可理解为相等运算符.相等运算符比较时,会自己进行类型转换,等于什么类型就会 ...