\(\mathcal{Descrtiption}\)

  给定 \(\{a_n\}\),现进行 \(m\) 次操作,每次操作随机一个区间 \([l,r]\),令其中元素全部变为区间最大值。对于每个 \(i\),求所有可能操作方案最终得到的 \(a_i\) 之和。答案模 \((10^9+7)\)。

  \(n,q\le400\)。

\(\mathcal{Solution}\)

  那什么我懒得写题解了就把草稿贴上来好了。(

\[f(i,l,r,x):=\text{the operating ways that after }i\text{-th operation,}\\
\forall i\in[l,r],a_i\le x \text{ and }a_{l-1},a_{r+1}>x.\\
f(i,l,r,x)=\left(\binom{l}{2}+\binom{r-l+2}{2}+\binom{n-r+1}{2}\right)f(i-1,l,r,x)\\
+\sum_{p<l}(p-1)f(i-1,p,r,x)+\sum_{r<p}(n-p)f(i-1,l,p,x).\\
\text{Thus, the answer for }i\text{ can be represented as }r_i\text{, where}\\
\begin{aligned}
r_i&=\sum_{x} x\sum_{[l,r]\ni i}f(q,l,r,x)-f(q,l,r,x-1)\\
&=\sum_{[l,r]\ni i}\sum_{x}-f(q,l,r,x)\\
&=\sum_{[l,r]\ni i}g(q,l,r)~~~~(g(i,l,r):=\sum_{x}-f(i,l,r,x)).
\end{aligned}\\
\text{Obviously, }g\text{'s expression is similar to }f\text{'s.}\\
\text{Maintaining partial sum, this problem can be solved in }\mathcal O(qn^2).
\]

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 400, MOD = 1e9 + 7, IINF = 0x3f3f3f3f;
int n, m, a[MAXN + 5];
int g[2][MAXN + 5][MAXN + 5], sum[MAXN + 5]; inline int tot( const int u ) { return ( u * ( u + 1ll ) >> 1 ) % MOD; }
inline int mul( const int u, const int v ) { return 1ll * u * v % MOD; }
inline int sub( int u, const int v ) { return ( u -= v ) < 0 ? u + MOD : u; }
inline int add( int u, const int v ) { return ( u += v ) < MOD ? u : u - MOD; } int main() {
scanf( "%d %d", &n, &m );
rep ( i, 1, n ) scanf( "%d", &a[i] );
a[0] = a[n + 1] = IINF; rep ( l, 1, n ) {
int mxv = a[l];
rep ( r, l, n ) {
mxv = mxv < a[r] ? a[r] : mxv;
int mnv = a[l - 1] < a[r + 1] ? a[l - 1] : a[r + 1];
if ( mnv > mxv ) g[0][l][r] = sub( mxv, mnv < IINF ? mnv : 0 );
}
} for ( int sta = 1, i = 1; i <= m; sta ^= 1, ++i ) {
memset( sum, 0, sizeof sum );
rep ( l, 1, n ) rep ( r, l, n ) {
g[sta][l][r] = add( sum[r], mul( add( add( tot( l - 1 ),
tot( r - l + 1 ) ), tot( n - r ) ), g[!sta][l][r] ) );
sum[r] = add( sum[r], mul( l - 1, g[!sta][l][r] ) );
}
memset( sum, 0, sizeof sum );
per ( r, n, 1 ) per ( l, r, 1 ) {
g[sta][l][r] = add( g[sta][l][r], sum[l] );
sum[l] = add( sum[l], mul( n - r, g[!sta][l][r] ) );
}
} rep ( i, 1, n ) {
int ans = 0;
rep ( l, 1, i ) rep ( r, i, n ) ans = add( ans, g[m & 1][l][r] );
printf( "%d%c", ans, i < n ? ' ' : '\n' );
}
return 0;
}

Solution -「ZJOI 2016」「洛谷 P3352」线段树的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3374(线段树)(询问区间和,支持单点修改)

    洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...

  3. 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)

    题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...

  4. 洛谷P5280 [ZJOI2019]线段树 [线段树,DP]

    传送门 无限Orz \(\color{black}S\color{red}{ooke}\)-- 思路 显然我们不能按照题意来每次复制一遍,而多半是在一棵线段树上瞎搞. 然后我们可以从\(modify\ ...

  5. 洛谷.T21778.过年(线段树 扫描线)

    题目链接或者这吧.. 被数据坑了 /* 操作按左端点排个序 依次进行即可 不是很懂 为什么不写Build 而在Add时改mp[rt]=p 会WA(too short on line 251..) 找到 ...

  6. 【洛谷】【线段树+位运算】P2574 XOR的艺术

    [题目描述:] AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的01串. 2. 给定一个范围[ ...

  7. 【洛谷】【线段树】P1471 方差

    [题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...

  8. 【洛谷】【线段树】P1047 校门外的树

    [题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...

  9. 【洛谷】【线段树】P1886 滑动窗口

    [题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...

随机推荐

  1. Linux下校验SHA1和MD5的方法

    当我们从互联网下载东西或者从U盘拷贝东西的时候,通常是不会和源文件有什么区别的,但是在偶然的情况下会出现下载或者拷贝出错的情况, 尤其是在下载大文件的时候,比如系统光盘......当你装机到一半才发现 ...

  2. markdownFormat

      对文档编辑主要还是用wps,因为以前毕业论文都是用的它来编排(刚开始用wps毕业论文的时候真的是用的想吐,感觉非常不好用,而且功能太多但对于自己需要的功能又偏偏找不到),用过几次后还觉得用它编辑文 ...

  3. Android函数抽取壳的实现

    0x0 前言 函数抽取壳这个词不知道从哪起源的,但我理解的函数抽取壳是那种将dex文件中的函数代码给nop,然后在运行时再把字节码给填回dex的这么一种壳. 函数抽取前: 函数抽取后: 很早之前就想写 ...

  4. Python与Javascript相互调用超详细讲解(2022年1月最新)(三)基本原理Part 3 - 通过C/C++联通

    目录 TL; DR python调javascript javascript调python 原理 基于Node.js的javascript调用python 从Node调用python函数 V8 嵌入P ...

  5. 《剑指offer》面试题33. 二叉搜索树的后序遍历序列

    问题描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 true,否则返回 false.假设输入的数组的任意两个数字都互不相同.   参考以下这颗二叉搜索树: 5 / \ ...

  6. linux中链接错误的时候,快速找到缺失的符号在哪个库中

    编译一个opencv程序,链接的时候出现大量的如下错误: /home/admin/opencv/opencv-master/modules/imgproc/src/color_lab.cpp:23: ...

  7. 在linux下编译android下的opencv,使用cmake的方法

    #前一篇帖子实验了build_sdk.py来编译opencv,失败了.#本篇尝试使用cmake来编译#感谢这篇帖子提供的指导:https://www.cnblogs.com/jojodru/p/100 ...

  8. js复制标题和链接

    问题 常常在写博客和作业时候,需要附上参考链接. 希望可以一键得到标题和链接. 解决方案 普通元素 可以使用findid然后复制 但是标题无法使用 <!DOCTYPE html> < ...

  9. netty系列之:请netty再爱UDT一次

    目录 简介 netty对UDT的支持 搭建一个支持UDT的netty服务 异常来袭 TypeUDT和KindUDT 构建ChannelFactory SelectorProviderUDT 使用UDT ...

  10. Tomcat-部署web工程方式

    Tomcat(部署web工程) 第一种方法:只需要把web工程的目录拷贝到Tomcat的webapps目录下即可 1,在webapps目录下创建一个book工程, 2,或者把做的工程内容拷贝到weba ...