普利姆(Prim)算法

1. 最小生成树(又名:最小权重生成树)

概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条。

可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短)。

2. 普利姆算法介绍

利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图

具体过程如下:

(1)设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合

(2)若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1

(3)若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1

(4)重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边

3.图例描述

4.Prime代码

#include <stdio.h>
#include <stdlib.h>
#include<iostream>
using namespace std; #define n 20
#define MaxNum 10000 /*定义一个最大整数*/ /*定义邻接矩阵类型*/
typedef int adjmatrix[n + 1][n + 1];
typedef struct {
int fromvex, tovex; //生成树的起点和终点
int weight; //边的权重
} Edge;
typedef Edge *EdgeNode; //定义生成树的别名
int arcnum; /*边的个数*/ /*建立图的邻接矩阵*/
void CreatMatrix(adjmatrix GA) {
int i, j, k, e;
cout<<"============================="<<endl;
cout<<"图中有"<<n<<"个顶点 "<<endl;
for(i=1; i<=n; i++) {
for(j=1; j<=n; j++) {
if(i==j) {
GA[i][j]=0; /*对角线的值置为0*/
} else {
GA[i][j]=MaxNum; /*其他位置的值置初始化为一个最大整数*/
}
}
}
cout<<"请输入边的个数"<<endl;
cin>>arcnum;
cout<<"请输入边的信息,依照起点,终点,权值的形式输入:"<<endl;
for(k=1; k<=arcnum; k++) {
cin>>i>>j>>e; /*读入边的信息*/
GA[i][j]=e;
GA[j][i]=e;
}
} /*初始化图的边集数组*/
void InitEdge(EdgeNode GE,int m) {
int i;
for(i=1; i<=m; i++) {
GE[i].weight=0;
}
} /*依据图的邻接矩阵生成图的边集数组*/
void GetEdgeSet(adjmatrix GA,EdgeNode GE) {
int i, j, k = 1;
for(i=1; i<=n; i++) {
for(j=i+1; j<=n; j++) {
if(GA[i][j] !=0 && GA[i][j] != MaxNum) {
GE[k].fromvex = i;
GE[k].tovex = j;
GE[k].weight = GA[i][j];
k++;
}
}
}
} /*按升序排列图的边集数组*/
void SortEdge(EdgeNode GE,int m) {
int i,j,k;
Edge temp;
for(i=1; i<m; i++) {
k=i;
for(j=i+1; j<=m; j++) {
if(GE[k].weight > GE[j].weight) {
k=j;
}
}
if(k!=i) {
temp = GE[i];
GE[i]=GE[k];
GE[k]=temp;
}
}
} /*利用普里姆算法从初始点v出发求邻接矩阵表示的图的最小生成树*/
void Prim(adjmatrix GA,EdgeNode T) {
int i,j,k,min,u,m,w;
Edge temp;
/*给T赋初值。相应为v1依次到其余各顶点的边*/
k=1;
for(i=1; i<=n; i++) {
if(i!=1) {
T[k].fromvex=1;
T[k].tovex=i;
T[k].weight=GA[1][i];
k++;
}
}
/*进行n-1次循环,每次求出最小生成树中的第k条边*/
for(k=1; k<n; k++) {
min=MaxNum;
m=k;
for(j=k; j<n; j++) {
if(T[j].weight<min) {
min=T[j].weight;
m=j;
}
}
/*把最短边对调到k-1下标位置*/ //可用swap替换
temp=T[k];
T[k]=T[m];
T[m]=temp;
/*把新增加最小生成树T中的顶点序号赋给j*/
j=T[k].tovex;
/*改动有关边,使T中到T外的每个顶点保持一条到眼下为止最短的边*/
for(i=k+1; i<n; i++) {
u=T[i].tovex;
w=GA[j][u];
if(w<T[i].weight) {
T[i].weight=w;
T[i].fromvex=j;
}
}
}
} /*输出边集数组的每条边*/
void OutEdge(EdgeNode GE,int e) {
int i;
printf("依照起点,终点。权值的形式输出的最小生成树为:\n");
for(i=1; i<=e; i++) {
printf("%d,%d,%d\n",GE[i].fromvex,GE[i].tovex,GE[i].weight);
}
printf("=============================\n");
} int main() {
adjmatrix GA;
Edge GE[n*(n-1)/2], T[n];
CreatMatrix(GA);
InitEdge(GE,arcnum);
GetEdgeSet(GA,GE);
SortEdge(GE,arcnum);
Prim(GA,T);
printf("\n");
OutEdge(T,n-1);
return 0;
}

图论---最小生成树----普利姆(Prim)算法的更多相关文章

  1. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  2. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  3. 普里姆Prim算法介绍

    普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...

  4. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  5. JS实现最小生成树之普里姆(Prim)算法

    最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...

  6. 最小生成树-普利姆算法eager实现

    算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...

  7. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  8. 最小生成树——Prim(普利姆)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog. ...

  9. 图的普里姆(Prim)算法求最小生成树

    关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...

随机推荐

  1. NTP 集群简略部署指南

    NTP 集群简略部署指南 by 无若 1. NTP 简介 网络时间协议(英语:Network Time Protocol,简称NTP)是在数据网络潜伏时间可变的计算机系统之间通过分组交换进行时钟同步的 ...

  2. 线程创建的三种方法:继承Thread类,实现Runnable接口,实现Callable接口

    线程创建 三种创建方式 1. 继承Thread类 自定义线程类继承Thread类 重写run()方法,编写线程执行体 创建线程对象,调用start()方法启动线程 线程不一定执行,CPU按排调度 pa ...

  3. Mybatis源码解析2—— 实例搭建

    大家好,我是可乐. 上篇文章给大家撸了一遍用 JDBC 直接操作数据库的实例,还只是简单写了一个查询的接口,其代码量就已经很大了,并且可乐还给大家分析了直接使用 JDBC 带来的一些问题,总之是一种反 ...

  4. Nginx配置websocket的安全协议wss

    //nginx配置wss访问方式 map $http_upgrade $connection_upgrade { default upgrade; '' close; } upstream webso ...

  5. Shell-10-标准输入输出错误

    标准输入输出和错误 标准输入.输出和错误 重定向符号 示例 1 1 标准输出 2 错误输出 2 标准输出和错误输出同时定向到一个文件中 >share.txt 2>&1 3 > ...

  6. Mysql数据库优化(1)

    1.尽量不要留null select id from t where num is null,可以,但尽量不要留null,null也占空间:使用not null填充数据库,像varchar(100)这 ...

  7. DVWA(五):CSRF 全等级跨站请求伪造

    CSRF,全称Cross-site request forgery,翻译过来就是跨站请求伪造,是指利用受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点击恶意链接或者访问包含攻击代码的页面 ...

  8. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  9. 栈(Stack)

    特点: 栈最大的特点就是后进先出(LIFO).对于栈中的数据来说,所有操作都是在栈的顶部完成的,只可以查看栈顶部的元素,只能够向栈的顶部压入数据,也只能从栈的顶部弹出数据. 实现: 利用一个单链表来实 ...

  10. jQuery中的常用方法:empty()、each()、$.each()、$.trim()、focus()(二)

    <!DOCTYPE html> <html> <head> <title>02_commonMethod.html</title> < ...