图论---最小生成树----普利姆(Prim)算法
普利姆(Prim)算法
1. 最小生成树(又名:最小权重生成树)
概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条。
可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短)。
2. 普利姆算法介绍
利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
具体过程如下:
(1)设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
(2)若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
(3)若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
(4)重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
3.图例描述
4.Prime代码
#include <stdio.h>
#include <stdlib.h>
#include<iostream>
using namespace std; #define n 20
#define MaxNum 10000 /*定义一个最大整数*/ /*定义邻接矩阵类型*/
typedef int adjmatrix[n + 1][n + 1];
typedef struct {
int fromvex, tovex; //生成树的起点和终点
int weight; //边的权重
} Edge;
typedef Edge *EdgeNode; //定义生成树的别名
int arcnum; /*边的个数*/ /*建立图的邻接矩阵*/
void CreatMatrix(adjmatrix GA) {
int i, j, k, e;
cout<<"============================="<<endl;
cout<<"图中有"<<n<<"个顶点 "<<endl;
for(i=1; i<=n; i++) {
for(j=1; j<=n; j++) {
if(i==j) {
GA[i][j]=0; /*对角线的值置为0*/
} else {
GA[i][j]=MaxNum; /*其他位置的值置初始化为一个最大整数*/
}
}
}
cout<<"请输入边的个数"<<endl;
cin>>arcnum;
cout<<"请输入边的信息,依照起点,终点,权值的形式输入:"<<endl;
for(k=1; k<=arcnum; k++) {
cin>>i>>j>>e; /*读入边的信息*/
GA[i][j]=e;
GA[j][i]=e;
}
} /*初始化图的边集数组*/
void InitEdge(EdgeNode GE,int m) {
int i;
for(i=1; i<=m; i++) {
GE[i].weight=0;
}
} /*依据图的邻接矩阵生成图的边集数组*/
void GetEdgeSet(adjmatrix GA,EdgeNode GE) {
int i, j, k = 1;
for(i=1; i<=n; i++) {
for(j=i+1; j<=n; j++) {
if(GA[i][j] !=0 && GA[i][j] != MaxNum) {
GE[k].fromvex = i;
GE[k].tovex = j;
GE[k].weight = GA[i][j];
k++;
}
}
}
} /*按升序排列图的边集数组*/
void SortEdge(EdgeNode GE,int m) {
int i,j,k;
Edge temp;
for(i=1; i<m; i++) {
k=i;
for(j=i+1; j<=m; j++) {
if(GE[k].weight > GE[j].weight) {
k=j;
}
}
if(k!=i) {
temp = GE[i];
GE[i]=GE[k];
GE[k]=temp;
}
}
} /*利用普里姆算法从初始点v出发求邻接矩阵表示的图的最小生成树*/
void Prim(adjmatrix GA,EdgeNode T) {
int i,j,k,min,u,m,w;
Edge temp;
/*给T赋初值。相应为v1依次到其余各顶点的边*/
k=1;
for(i=1; i<=n; i++) {
if(i!=1) {
T[k].fromvex=1;
T[k].tovex=i;
T[k].weight=GA[1][i];
k++;
}
}
/*进行n-1次循环,每次求出最小生成树中的第k条边*/
for(k=1; k<n; k++) {
min=MaxNum;
m=k;
for(j=k; j<n; j++) {
if(T[j].weight<min) {
min=T[j].weight;
m=j;
}
}
/*把最短边对调到k-1下标位置*/ //可用swap替换
temp=T[k];
T[k]=T[m];
T[m]=temp;
/*把新增加最小生成树T中的顶点序号赋给j*/
j=T[k].tovex;
/*改动有关边,使T中到T外的每个顶点保持一条到眼下为止最短的边*/
for(i=k+1; i<n; i++) {
u=T[i].tovex;
w=GA[j][u];
if(w<T[i].weight) {
T[i].weight=w;
T[i].fromvex=j;
}
}
}
} /*输出边集数组的每条边*/
void OutEdge(EdgeNode GE,int e) {
int i;
printf("依照起点,终点。权值的形式输出的最小生成树为:\n");
for(i=1; i<=e; i++) {
printf("%d,%d,%d\n",GE[i].fromvex,GE[i].tovex,GE[i].weight);
}
printf("=============================\n");
} int main() {
adjmatrix GA;
Edge GE[n*(n-1)/2], T[n];
CreatMatrix(GA);
InitEdge(GE,arcnum);
GetEdgeSet(GA,GE);
SortEdge(GE,arcnum);
Prim(GA,T);
printf("\n");
OutEdge(T,n-1);
return 0;
}
图论---最小生成树----普利姆(Prim)算法的更多相关文章
- 最小生成树-普利姆(Prim)算法
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...
- 图解最小生成树 - 普里姆(Prim)算法
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...
- 普里姆Prim算法介绍
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...
- 最小生成树-普利姆算法lazy实现
算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...
- JS实现最小生成树之普里姆(Prim)算法
最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...
- 最小生成树-普利姆算法eager实现
算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...
- POJ-2421-Constructing Roads(最小生成树 普利姆)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26694 Accepted: 11720 Description The ...
- 最小生成树——Prim(普利姆)算法
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog. ...
- 图的普里姆(Prim)算法求最小生成树
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...
随机推荐
- Rip CD on Ubuntu
用Mint自带的banshee可以把CD转换为ogg文件,[Media -> Import Media],然后选择Audio CD,但只能转换为ogg格式,好像不能自动获取ID3标签:比较好的方 ...
- STM32—SPI读写FLASH
目录 FLASH简介 W25Q64 W25Q64简介 FLASH控制指令 FLASH内部存储结构 代码讲解 读取芯片ID 发送写使能信号 等待FLASH不忙 擦除扇区 写入数据 读取数据 注 FLAS ...
- IO流(File类--递归--过滤器--IO字节流--IO字符流--Properties集合--缓冲流--转换流--序列化流--打印流)
一.File类 1.1概述 java.io.File 类是文件和目录路径名的抽象表示,主要用于文件和目录的创建.查找和删除等操作. 1.1.1相对路径与绝对路径 相对路径从盘符开始的路径,这是一个完整 ...
- Difference between trustStore and keyStore in Java - SSL
Difference between trustStore and keyStore in Java - SSL trustStore vs keyStore in Java trustStore ...
- mzy对于枚举的理解
关于enum,其实就是简化了的class,功能就是提供一个个独立的.特定含义的常量! 在JDK5.0之前我们想模拟enum的功能,只能使用自定义类的形式: 1.首先私有化构造方法,让外部不能new对象 ...
- Flink Streaming状态处理(Working with State)
参考来源: https://www.jianshu.com/p/6ed0ef5e2b74 https://blog.csdn.net/Fenggms/article/details/102855159 ...
- 简析时序数据库 InfluxDB
时序数据基础 时序数据特点 时序数据TimeSeries是一连串随时间推移而发生变化的相关事件. 以下图的 CPU 监控数据为例,同个 IP 的相关监控数据组成了一条时序数据,不相关数据则分布在不同的 ...
- Red Hat Enterprise Linux 7.2修改主机名(hostname)
Red Hat Enterprise Linux 7.2在安装的时候,会默认生成主机名:localhost. 那么如何修改成自己想要的自己名? //格式为:用户名@主机名 比如: [root@loca ...
- MySQL 5.7新特性介绍
本文是基于MySQL-5.7.7-rc版本,未来可能 还会发生更多变化. 1.即将删除的特性1.1.InnoDB monitoring features,详见:WL#7377(访问地址:http:// ...
- GIMP 一键均匀添加多条参考线 一键均匀切分图片
添加参考线 #!/usr/bin/env python2 # -*- coding: utf-8 -*- from gimpfu import * # orientation: ORIENTATION ...