普利姆(Prim)算法

1. 最小生成树(又名:最小权重生成树)

概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条。

可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短)。

2. 普利姆算法介绍

利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图

具体过程如下:

(1)设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合

(2)若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1

(3)若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1

(4)重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边

3.图例描述

4.Prime代码

#include <stdio.h>
#include <stdlib.h>
#include<iostream>
using namespace std; #define n 20
#define MaxNum 10000 /*定义一个最大整数*/ /*定义邻接矩阵类型*/
typedef int adjmatrix[n + 1][n + 1];
typedef struct {
int fromvex, tovex; //生成树的起点和终点
int weight; //边的权重
} Edge;
typedef Edge *EdgeNode; //定义生成树的别名
int arcnum; /*边的个数*/ /*建立图的邻接矩阵*/
void CreatMatrix(adjmatrix GA) {
int i, j, k, e;
cout<<"============================="<<endl;
cout<<"图中有"<<n<<"个顶点 "<<endl;
for(i=1; i<=n; i++) {
for(j=1; j<=n; j++) {
if(i==j) {
GA[i][j]=0; /*对角线的值置为0*/
} else {
GA[i][j]=MaxNum; /*其他位置的值置初始化为一个最大整数*/
}
}
}
cout<<"请输入边的个数"<<endl;
cin>>arcnum;
cout<<"请输入边的信息,依照起点,终点,权值的形式输入:"<<endl;
for(k=1; k<=arcnum; k++) {
cin>>i>>j>>e; /*读入边的信息*/
GA[i][j]=e;
GA[j][i]=e;
}
} /*初始化图的边集数组*/
void InitEdge(EdgeNode GE,int m) {
int i;
for(i=1; i<=m; i++) {
GE[i].weight=0;
}
} /*依据图的邻接矩阵生成图的边集数组*/
void GetEdgeSet(adjmatrix GA,EdgeNode GE) {
int i, j, k = 1;
for(i=1; i<=n; i++) {
for(j=i+1; j<=n; j++) {
if(GA[i][j] !=0 && GA[i][j] != MaxNum) {
GE[k].fromvex = i;
GE[k].tovex = j;
GE[k].weight = GA[i][j];
k++;
}
}
}
} /*按升序排列图的边集数组*/
void SortEdge(EdgeNode GE,int m) {
int i,j,k;
Edge temp;
for(i=1; i<m; i++) {
k=i;
for(j=i+1; j<=m; j++) {
if(GE[k].weight > GE[j].weight) {
k=j;
}
}
if(k!=i) {
temp = GE[i];
GE[i]=GE[k];
GE[k]=temp;
}
}
} /*利用普里姆算法从初始点v出发求邻接矩阵表示的图的最小生成树*/
void Prim(adjmatrix GA,EdgeNode T) {
int i,j,k,min,u,m,w;
Edge temp;
/*给T赋初值。相应为v1依次到其余各顶点的边*/
k=1;
for(i=1; i<=n; i++) {
if(i!=1) {
T[k].fromvex=1;
T[k].tovex=i;
T[k].weight=GA[1][i];
k++;
}
}
/*进行n-1次循环,每次求出最小生成树中的第k条边*/
for(k=1; k<n; k++) {
min=MaxNum;
m=k;
for(j=k; j<n; j++) {
if(T[j].weight<min) {
min=T[j].weight;
m=j;
}
}
/*把最短边对调到k-1下标位置*/ //可用swap替换
temp=T[k];
T[k]=T[m];
T[m]=temp;
/*把新增加最小生成树T中的顶点序号赋给j*/
j=T[k].tovex;
/*改动有关边,使T中到T外的每个顶点保持一条到眼下为止最短的边*/
for(i=k+1; i<n; i++) {
u=T[i].tovex;
w=GA[j][u];
if(w<T[i].weight) {
T[i].weight=w;
T[i].fromvex=j;
}
}
}
} /*输出边集数组的每条边*/
void OutEdge(EdgeNode GE,int e) {
int i;
printf("依照起点,终点。权值的形式输出的最小生成树为:\n");
for(i=1; i<=e; i++) {
printf("%d,%d,%d\n",GE[i].fromvex,GE[i].tovex,GE[i].weight);
}
printf("=============================\n");
} int main() {
adjmatrix GA;
Edge GE[n*(n-1)/2], T[n];
CreatMatrix(GA);
InitEdge(GE,arcnum);
GetEdgeSet(GA,GE);
SortEdge(GE,arcnum);
Prim(GA,T);
printf("\n");
OutEdge(T,n-1);
return 0;
}

图论---最小生成树----普利姆(Prim)算法的更多相关文章

  1. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  2. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  3. 普里姆Prim算法介绍

    普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...

  4. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  5. JS实现最小生成树之普里姆(Prim)算法

    最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...

  6. 最小生成树-普利姆算法eager实现

    算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...

  7. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  8. 最小生成树——Prim(普利姆)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog. ...

  9. 图的普里姆(Prim)算法求最小生成树

    关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...

随机推荐

  1. 基于 Clusternet 与 OCM 打造新一代开放的多集群管理平台

    背景 随着 5G.物联网设备的爆炸性增长以及智能终端不断增强的计算能力,带来了前所未有的数据量,传统的中心集中式计算捉襟见肘."新基建"战略的实施,工业互联网.车联网/自动驾驶.智 ...

  2. 01 CTF从0到。。。。

    无意间在前段时间接触到了CTF,感觉很有意思,就参加了个单位的短期培训,并且参加了比赛,也是无意混进了决赛.感觉自己不会的还很多!SO,开始写博客开始刷题,自己很菜,不会C,不会Python,不会汇编 ...

  3. 问题求解与程序设计(C重新回顾:个人版)一

    一.容易遗忘之转义字符 转义序列 含义 \n 换行 \t 水平制表 \\ 输出反斜杠 \a 响铃符 \'' 输出双引号 \' 输出单引号 \? 输出问号 \r 输出回车符(不换行,光标定位当前行的开始 ...

  4. NOIP 模拟 10 考试总结

    T1 一道很妙的题,打暴力分也很多,但是考试的时候忘开 long long 了. 题解 T2 一道挺水的题,不过...(打挂了) 题解 T3 此题甚妙,转化真多,不过对思维是一个非常大的扩展 题解 考 ...

  5. 从350ms到80ms,揭秘阿里工程师 iOS 短视频优化方案

    内容作为 App 产品新的促活点,受到了越来越多的重视与投入,短视频则是增加用户粘性.增加用户停留时长的一把利器.短视频的内容与体验直接关系到用户是否愿意长时停留,盒马也提出全链路内容视频化的规划,以 ...

  6. 7、二进制安装K8s之部署kube-proxy

    二进制安装K8s之部署kube-proxy 1.创建配置文件 cat > /data/k8s/config/kube-proxy.conf << EOF KUBE_PROXY_OPT ...

  7. C# lock的语法糖原理--《.net core 底层入门》之自旋锁,互斥锁,混合锁,读写锁

    在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施 原子操作适用于简单的单个操作,无锁算法适用于相对简单的一连串操作,而线程锁适用于复杂的一连 ...

  8. Django常用 命令

    Django常用 命令: 安装: pip install django 指定版本 pip3 install django==2.0 新建项目: django-admin.py startproject ...

  9. Oracle数据库 —— DML完结

    时间:2016-8-18 01:17 ----------------------------------------------------------------------------停下休息的 ...

  10. 使用Eclipse搭建SSM框架(Spring + Spring MVC + Mybatis)

    1.创建项目 1)打开Eclipse,点击File --> New --> Other 2)输入maven,找到Maven Project 3)然后一直按Next,直到出现一下界面: 4) ...