T1 打地鼠


全场就俩人没切,还有一个是忘关$freopen$了。

$code:$

 1 #include<bits/stdc++.h>
2 #define rin register signed
3 using namespace std;
4 const int NN=2e3+5;
5 int n,k,pre[NN][NN],ans;
6 char ch[NN];
7 inline int read(){
8 int x=0,f=1; char ch=getchar();
9 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
10 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
11 return x*f;
12 }
13 inline void write(int x,char sp){
14 char ch[25]; int len=0;
15 if(x<0){ putchar('-'); x=~x+1; }
16 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
17 for(int i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
18 }
19 signed main(){
20 n=read(); k=read();
21 for(rin i=1;i<=n;i++){
22 scanf("%s",ch+1);
23 for(rin j=1;j<=n;j++)
24 pre[i][j]=pre[i][j-1]+(ch[j]=='1');
25 for(rin j=1;j<=n;j++) pre[i][j]+=pre[i-1][j];
26 }
27 for(int i=0;i<=n-k;i++)
28 for(int j=0;j<=n-k;j++)
29 ans=max(ans,pre[i+k][j+k]+pre[i][j]-pre[i][j+k]-pre[i+k][j]);
30 write(ans,'\n');
31 return 0;
32 }

T1

T2 竞赛图


竞赛图缩点后会形成一条链,因此对一个不强联通的子图$S$,必然存在且只有一个强联通的子图$T$,满足$S-T$中点的边都是$S \to T$的。

考虑通过这个性质用强联通子图更新不强联通子图。预处理出每个子集所有点出边的交集即可。

$code:$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 const int NN=24;
4 int t,n,to[1<<NN],S,ans;
5 bool is[1<<NN];
6 inline int read(){
7 int x=0,f=1; char ch=getchar();
8 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
9 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
10 return x*f;
11 }
12 inline void write(int x,char sp){
13 char ch[20]; int len=0;
14 if(x<0){ putchar('-'); x=~x+1; }
15 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
16 for(int i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
17 }
18 signed main(){
19 t=read();
20 while(t--){
21 memset(to,0,sizeof(to)); memset(is,1,sizeof(is));
22 n=read(); to[0]=S=(1<<n)-1; ans=0;
23 for(int i=0;i<n;i++) for(int j=0;j<n;j++)
24 if(read()) to[1<<i]|=1<<j;
25 for(int i=1;i<=S;i++) to[i]=to[i^(i&(-i))]&to[i&(-i)];
26 for(int i=1;i<=S;i++)
27 if(is[i])
28 for(int j=to[i];j;j=(j-1)&to[i]) is[i|j]=0;
29 for(int i=0;i<=S;i++) if(is[i]) ++ans;
30 write(ans,'\n');
31 }
32 return 0;
33 }

T2

T3 糖果


神仙$DP$,没改出来,钴了。

T4 树


$\textit{NOI D1T1}$原题,把黑白边反过来了。

树剖,边权下放,每次修改将路径上点打上时间戳,发现黑边数量其实就是相邻两边时间戳不同的边对数。

一开始建树时要保证所有点的时间戳不同。

$code:$

  1 #include<bits/stdc++.h>
2 using namespace std;
3 const int NN=3e5+5;
4 int q,n,idx,to[NN<<1],nex[NN<<1],head[NN],tp,x,y;
5 int siz[NN],son[NN],top[NN],dfn[NN],fa[NN],dep[NN],cnt,tim;
6 inline int read(){
7 int x=0,f=1; char ch=getchar();
8 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
9 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
10 return x*f;
11 }
12 inline void write(int x,char sp){
13 char ch[20]; int len=0;
14 if(x<0){ putchar('-'); x=~x+1; }
15 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
16 for(int i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
17 }
18 inline void add(int a,int b){
19 to[++idx]=b; nex[idx]=head[a]; head[a]=idx;
20 to[++idx]=a; nex[idx]=head[b]; head[b]=idx;
21 }
22 void dfs1(int s,int f){
23 siz[s]=1; fa[s]=f; dep[s]=dep[f]+1;
24 for(int i=head[s];i;i=nex[i]){
25 int v=to[i];
26 if(v==f) continue;
27 dfs1(v,s);
28 siz[s]+=siz[v];
29 if(siz[v]>siz[son[s]]) son[s]=v;
30 }
31 }
32 void dfs2(int s,int t){
33 dfn[s]=++cnt; top[s]=t;
34 if(!son[s]) return;
35 dfs2(son[s],t);
36 for(int i=head[s];i;i=nex[i]){
37 int v=to[i];
38 if(v!=fa[s]&&v!=son[s]) dfs2(v,v);
39 }
40 }
41 struct segment_tree{
42 #define ld rt<<1
43 #define rd (rt<<1)|1
44 int sum[NN<<2],lc[NN<<2],rc[NN<<2],laz[NN<<2];
45 void pushup(int rt){
46 sum[rt]=sum[ld]+sum[rd]+(rc[ld]!=lc[rd]);
47 lc[rt]=lc[ld]; rc[rt]=rc[rd];
48 }
49 void pushdown(int rt){
50 if(!laz[rt]) return;
51 laz[ld]=laz[rt]; laz[rd]=laz[rt];
52 sum[ld]=sum[rd]=0;
53 lc[ld]=lc[rd]=rc[ld]=rc[rd]=laz[rt];
54 laz[rt]=0;
55 }
56 void build(int rt,int l,int r){
57 if(l==r){ lc[rt]=rc[rt]=l; return; }
58 int mid=l+r>>1;
59 build(ld,l,mid);
60 build(rd,mid+1,r);
61 pushup(rt);
62 }
63 void modify(int rt,int l,int r,int opl,int opr,int v){
64 if(l>=opl&&r<=opr){
65 sum[rt]=0;
66 lc[rt]=rc[rt]=laz[rt]=v;
67 return;
68 }
69 pushdown(rt);
70 int mid=l+r>>1;
71 if(opl<=mid) modify(ld,l,mid,opl,opr,v);
72 if(opr>mid) modify(rd,mid+1,r,opl,opr,v);
73 pushup(rt);
74 }
75 int query(int rt,int l,int r,int opl,int opr){
76 if(l>=opl&&r<=opr) return sum[rt];
77 pushdown(rt);
78 int mid=l+r>>1;
79 if(opr<=mid) return query(ld,l,mid,opl,opr);
80 else if(opl>mid) return query(rd,mid+1,r,opl,opr);
81 else return query(ld,l,mid,opl,mid)+query(rd,mid+1,r,mid+1,opr)+(lc[rd]!=rc[ld]);
82 }
83 int look(int rt,int l,int r,int pos){
84 if(l==r) return lc[rt];
85 pushdown(rt);
86 int mid=l+r>>1;
87 if(pos<=mid) return look(ld,l,mid,pos);
88 else return look(rd,mid+1,r,pos);
89 }
90 }s;
91 void UPD(int x,int y){
92 int fx=top[x],fy=top[y]; ++tim;
93 while(fx!=fy)
94 if(dep[fx]>dep[fy]){
95 s.modify(1,1,n,dfn[fx],dfn[x],tim);
96 x=fa[fx]; fx=top[x];
97 }
98 else{
99 s.modify(1,1,n,dfn[fy],dfn[y],tim);
100 y=fa[fy]; fy=top[y];
101 }
102 if(dep[x]>dep[y]) s.modify(1,1,n,dfn[y],dfn[x],tim);
103 else s.modify(1,1,n,dfn[x],dfn[y],tim);
104 }
105 int ANS(int x,int y){
106 int ans=0,fx=top[x],fy=top[y];
107 while(fx!=fy)
108 if(dep[fx]>dep[fy]){
109 ans+=s.query(1,1,n,dfn[fx],dfn[x]);
110 ans+=(s.look(1,1,n,dfn[fx])!=s.look(1,1,n,dfn[fa[fx]]));
111 x=fa[fx]; fx=top[x];
112 }
113 else{
114 ans+=s.query(1,1,n,dfn[fy],dfn[y]);
115 ans+=(s.look(1,1,n,dfn[fy])!=s.look(1,1,n,dfn[fa[fy]]));
116 y=fa[fy]; fy=top[y];
117 }
118 if(dep[x]<dep[y]) ans+=s.query(1,1,n,dfn[x],dfn[y]);
119 else ans+=s.query(1,1,n,dfn[y],dfn[x]);
120 return ans;
121 }
122 signed main(){
123 tim=n=read();
124 for(int i=1;i<n;i++) add(read(),read());
125 dfs1(1,0); dfs2(1,1);
126 s.build(1,1,n);
127 q=read();
128 while(q--){
129 tp=read(); x=read(); y=read();
130 if(tp==1) UPD(x,y);
131 if(tp==2) write(ANS(x,y),'\n');
132 }
133 return 0;
134 }

T4

2021.8.14考试总结[NOIP模拟39]的更多相关文章

  1. 2021.9.14考试总结[NOIP模拟53]

    T1 ZYB和售货机 容易发现把每个物品都买成$1$是没有影响的. 然后考虑最后一个物品的方案,如果从$f_i$向$i$连边,发现每个点有一个出度多个入度,可以先默认每个物品都能买且最大获利,这样可以 ...

  2. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  3. 2021.9.13考试总结[NOIP模拟52]

    T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bit ...

  4. 2021.8.11考试总结[NOIP模拟36]

    T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 ...

  5. 2021.7.29考试总结[NOIP模拟27]

    T1 牛半仙的妹子图 做法挺多的,可以最小生成树或者最短路,复杂度O(cq),c是颜色数. 我考场上想到了原来做过的一道题影子,就用了并查集,把边权排序后一个个插入,记录权值的前缀和,复杂度mlogm ...

  6. 2021.7.15考试总结[NOIP模拟16]

    ZJ模拟D2就是NB.. T1 Star Way To Heaven 谁能想到这竟是个最小生成树呢?(T1挂分100的高人JYF就在我身边 把上边界和下边界看成一个点和星星跑最小生成树,从上边界开始跑 ...

  7. 2021.9.12考试总结[NOIP模拟51]

    T1 茅山道术 仔细观察发现对于每个点只考虑它前面第一个与它颜色相同的点即可. 又仔细观察发现对一段区间染色后以这个区间内点为端点的区间不能染色. 于是对区间右端点而言,区间染色的贡献为遍历到区间左端 ...

  8. 2021.9.9考试总结[NOIP模拟50]

    T1 第零题 神秘结论:从一个点满体力到另一个点的复活次数与倒过来相同. 于是预处理出每个点向上走第$2^i$个死亡点的位置,具体实现可以倍增或二分. 每次询问先从两个点同时向上倍增,都转到离$LCA ...

  9. 2021.9.7考试总结[NOIP模拟49]

    T1 Reverse $BFS$暴力$O(n^2)$ 过程中重复枚举了很多点,考虑用链表记录当前点后面可到达的第一个未更新点. 搜索时枚举翻转子串的左端点,之后便可以算出翻转后$1$的位置. $cod ...

随机推荐

  1. 阶段总结-Java基础-超进阶

    Gitee项目地址:https://gitee.com/zc10010/java_interview_guide/tree/master/知识点话术 项目叫话术,但是我觉得作为知识点学习是挺不错的. ...

  2. python生成时间序列(date_range)

    介绍 自己写了一个用python内置模块实现的生成时间序列的函数 支持自动推断字符串到datetime的转换, 但对格式有一定要求, 其它格式可手动指定格式化方式, 格式化方式与python内置格式化 ...

  3. 使用ECS和OSS搭建个人网盘

    体验简介 本场景将提供一台配置了Centos 7.7版本的ECS实例(云服务器)和对象存储OSS实例.通过本教程的操作,您可以基于ECS和OSS快速搭建一个个人网盘. 体验此场景后,可以掌握的知识有: ...

  4. Selenium系列4-元素定位

    前言 说起元素定位,一定是学习自动化测试绕不开的第一道关,无论是web端的UI自动化还是移动端的自动化,在需要首先对元素进行定位才可以完成对元素的操作已达成测试目的,在Selenium中,可以使用fi ...

  5. Docker Command and Dockerfile

    镜像相关命令 # 下载镜像 docker pull xxx # 搜素镜像 docker search xxx # 查看已经下载了哪些镜像 docker images # 查看已下载镜像的id dock ...

  6. 宝塔面板使用PM2命令提示Command Not Found解决方案

    1.查看node版本 进入/www/server/nvm/versions/node 查看node版本 2.复制以下代码 以node版本v12.18.1举例 PATH=$PATH:/www/serve ...

  7. symfony2已有数据表导入实体时报错 Doctrine does not support reverse engineering from tables that don't have a primary key

    先在配置文件 app/config/config.yml中配置 schema_filter: /^(?!(tablename))/ 即可,或者在出现问题表都加上一个id 然后再使用命令 php app ...

  8. Python中“if __name__=='__main__':”

    在Python当中,如果代码写得规范一些,通常会写上一句"if name=='main:"作为程序的入口,但似乎没有这么一句代码,程序也能正常运行.这句代码多余吗?原理又在哪里? ...

  9. px em rem区别

    国内的设计师大都喜欢用px,而国外的网站大都喜欢用em和rem,那么三者有什么区别,又各自有什么优劣呢? PX特点 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的 ...

  10. farOs 介绍

    nGame nGame 一款文字游戏服务端框架;用于快速构建:自由探索.武侠.修真.模拟,回合制,剧本杀.动态语言小说.等服务器 如果你有期望实现的功能请加Q群 ngame计划 完善框架功能 farO ...