Description

汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤数。

Input

输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

Output

只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

Sample Input

3
AB BC CA BA CB AC

Sample Output

7
 
开始看这道题时,我一点感觉也没有。后来我也是看了题解才做出来的。
f[i][j]表示从i号杆子移动j个铁片到最优柱子的最少步数,g[i][j]表示从i号杆子移动j个铁皮的最优柱子的编号。
然后就是汉诺塔的经典转移了(以下为了方便叙述,i表示杆上的铁片个数,用x表示原杆,y=g[x][i-1],z表示另外一根杆);
从x移动i个铁片,最优方案是先把x上的i-1个铁片移动到y,再移动最后一个到z,最后再从y上将剩下的i-1个铁片移动回来。
但是由于本题的最优方案是按照优先级来的,所以我们要分类讨论一下。
1.若g[y][i-1]=z,我们就可以直接将y上的i-1个铁片移动到z上:f[x][i]=f[x][i-1]+1+f[y][i-1],g[x][i]=z。
2.若g[y][i-1]=x,我们就得将y上的i-1个铁片移动到x上,但是由于不能移动相同的盘子,所以只能将z上的一个移上y,然后再将x上的i-1个移动到y上来。
方程:f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[xi-1],g[x][i]=y。
初始化:f[i][1]=1,g[i][1]=在i柱子上移动最优的那一个。

 #include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 40
int n,g[][maxn];
long long f[][maxn]; int main()
{
freopen("1019.in","r",stdin);
freopen("1019.out","w",stdout);
scanf("%d\n",&n);
char opt[][]; int i,x,y,z;
for (i = ;i <= ;++i) scanf("%s",opt[i]);
for (i = ;i <= ;++i)
if (!g[opt[i][]-'A'+][])
g[opt[i][]-'A'+][] = opt[i][]-'A'+,f[opt[i][]-'A'+][] = ;
for (i = ;i <= n;++i)
for (x = ;x <= ;++x)
{
y = g[x][i-]; z = -x-y;
f[x][i] += f[x][i-] + ;
if (g[y][i-] == z)
{
f[x][i] += f[y][i-];
g[x][i] = z;
}
else
{
f[x][i] += f[y][i-]++f[x][i-];
g[x][i] = y;
}
}
printf("%lld",f[][n]);
fclose(stdin); fclose(stdout);
return ;
}

参考BY:http://blog.sina.com.cn/s/blog_76f6777d0101b8l1.html

BZOJ 1019 汉诺塔的更多相关文章

  1. [BZOJ]1019 汉诺塔(SHOI2008)

    找规律成功次数++. Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. ...

  2. BZOJ_1019_[SHOI2008]_汉诺塔_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...

  3. 【BZOJ】【1019】【SHOI2008】汉诺塔

    递推/DP 类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧…… 题解:http://blog.csdn.net/regina8023/article/details/43016813 因 ...

  4. BZOJ 1019: [SHOI2008]汉诺塔

    Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...

  5. 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 559  Solved: 341[Submit][Status] ...

  6. 【BZOJ】1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...

  7. BZOJ 1019: [SHOI2008]汉诺塔( dp )

    dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...

  8. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  9. 【BZOJ 1019】 [SHOI2008]汉诺塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 [题意] [题解] 这个题解讲得很清楚了 http://blog.sina.co ...

随机推荐

  1. java中的上转型对象

    1. 定义 如果B类是A类的子类或间接子类,当用B类创建对象b并将这个对象b的引用赋给A类对象a时,如: A a;a = new B();ORA a;B b = new B();a = b; 通俗的说 ...

  2. Lucene IndexReader,IndexWriter,IndexSearcher 缓存应用

    1.IndexManager类,用于提供IndexReader,IndexWriter,IndexSearcher获取接口 import java.io.File; import java.io.IO ...

  3. GOOGLE搜索從入門到精通V4.0

    1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...

  4. php代码优化技巧

    搬运: 1. 尽量采用大量的PHP内置函数. 2. echo 比print 快. 3. 不要把方法细分得过多,仔细想想你真正打算重用的是哪些代码? 4. 在执行for循环之前确定最大循环数,不要每循环 ...

  5. Quartz Features

    Runtime Environments Quartz can run embedded within another free standing application Quartz can be ...

  6. SQL语句优化(分享)

    一.操作符优化 1.IN 操作符 用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格.但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用 ...

  7. css(display,float,position)

    display 用来设置元素的显示方式 display : block | none | inline | inline-block inline:指定对象为内联元素 block:指定对象为块元素 i ...

  8. 第一篇、Apache和Tomcat的整合

    1.web架构 首先上图,解释web通用架构 通常情况下分为三大块 : ★ Web server :  通常情况下由 Apache Http Server  . IBM Http Server  .I ...

  9. java web(jsp)-The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path

    在静态项目上新建 jsp文件的时候,报错:The superclass "javax.servlet.http.HttpServlet" was not found on the ...

  10. Linq 调试

    void Main() { var MyMonitor = new Devart.Data.Oracle.OracleMonitor(); MyMonitor.IsActive = true; var ...