第六周练习I题

I - 数论,线性方程

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

 

Description

The Sky is Sprite.  The Birds is Fly in the Sky.  The Wind is Wonderful.  Blew Throw the Trees  Trees are Shaking, Leaves are Falling.  Lovers Walk passing, and so are You.  ................................Write in English class by yifenfei 
Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!  Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead. 
 

Input

The input contains multiple test cases.  Each case two nonnegative integer a,b (0<a, b<=2^31) 
 

Output

output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead. 
 

Sample Input

77 51
10 44
34 79
 

Sample Output

2 -3
sorry
7 -3
 
 扩展欧几里德算法详解
http://www.cnblogs.com/hfc-xx/p/4744462.html
题解:紫书p313
扩展欧几里得算法是 用来在已知a,b 求解一组x,y使得x*a+y*b=gcd(a,b)

因为已知欧几里得算法gcd(a,b)=gcd(b,a%b)  所以x*a+y*b=gcd(a,b)=gcd(b,a%b)=x*b+y*a%b=x*b+y*(a-a/b*b)=y*a+(x-a/b*y)*b;

注意;a-a/b*b=a%b 这样就将a,b的线性组合化简b为a%b与的线性组合. 根据我的输出图可以看到: a,b都在减小,当b减小到0时, 我们就可以得出x=1,y=0; 然后递归回去就可以求出最终的x,y了

 
#include<iostream>
using namespace std;
void gcd(int a,int b,int & d,int &x,int &y)
{
if(!b)
{
d=a;x=;y=;
// cout<<d<<" "<<x<<" "<<y<<endl; //输出
}
else
{
gcd(b,a%b,d,y,x);
// cout<<b<<" "<<a%b<<" "<<d<<" "<<y<<" "<<x<<endl; //输出
y-=a/b*x;
// cout<<x<<" "<<y<<endl; //输出
}
}
int main()
{
int a,b,d,x,y;
while(cin>>a>>b)
{
gcd(a,b,d,x,y);
if(d!=) cout<<"sorry"<<endl;
else
{
while(x<) //x不能小于0
x+=b,y-=a;
cout<<x<<" "<<y<<endl;
}
}
return ;
}

HDU2669 第六周练习I题(扩展欧几里算法)的更多相关文章

  1. SGU 106 The equation 扩展欧几里得好题

    扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  3. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  4. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  5. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程

    什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...

  7. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  8. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  9. Root(hdu5777+扩展欧几里得+原根)2015 Multi-University Training Contest 7

    Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Su ...

随机推荐

  1. 课后习题 SPJ

    CREATE TABLE S ( SNO char(2) primary key, SNAME varchar(20), STATUS char(4), CITY char(10) ); create ...

  2. 软工UML学习札记

    UML模型由:事物.关系和图组成 (1)类(class)── 类用带有类名.属性和操作的矩形框来表示. (2)主动类(active class)── 主动类的实例应具有一个或多个进程或线程,能够启动控 ...

  3. oGitHub 注册

    GitHub 注册 要想使用 GitHub 第一步当然是注册 GitHub 账号: 1.首先打开 https://github.com/pricing 进行注册. 2.在打开的页面中点击「Sign u ...

  4. Esxi 5.0下配置LSI SAS RAID卡

    公司有几台服务器,安装的是ESXI5.0的虚拟机,原来使用的是普通的台式机,现在新购的专用服务器并安装的LSI 8708 SAS RAID卡(服务器自带的板载RAID卡ESXI不支持),现在要将虚拟机 ...

  5. 图解向hadoop分布式文件系统写文件的工作流程

    网上看到一张关于hadoop分布式文件系统(hdfs)的工作原理的图片,其实主要是介绍了向hdfs写一个文件的流程.图中的流程已经非常清晰,直接上图 好吧,博客园告诉我少于200字的文章不允许发布到网 ...

  6. 《Web 前端面试指南》2、JavaScript 的 Bind 函数进阶

    使用 Bind() 设置方法中 this 对象 //<button>获取随机的人</button>​ //<input type="text"> ...

  7. IE chrome兼容问题

    1.关于display显示和隐藏问题 document.getElementById("id").style.display="";//表示显示 documen ...

  8. Prefix.pch的作用和用法

    一般用于放置宏,省去xcode编译的时间 Hello World_Prefix.pch:扩展名.pch表示"precompiled header",这是一个你工程要用到的来自于外部 ...

  9. ok6410 u-boot-2012.04.01移植六完善MLC NAND支持

    继ok6410 u-boot-2012.04.01移植四.五后,开发板基本已支持MLC NAND,支持DM9000.但是通过NAND命令更新u-boot到NAND,还存在问题,需要根据u-boot的n ...

  10. UVa 108: Maximum Sum

    这道题用暴力解法+动态规划.分析如下: 对于某个1*m的矩阵,即一个数列,求其maximal sub-rectangle,可以通过求最大长连续字串和来求得(这个用到了动态规划). 那么对于n*m的矩阵 ...