Description

Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recurrence relation:

F1 = 1, F2 = 2, Fi = Fi - 1 + Fi - 2 (i > 2).

We'll define a new number sequence Ai(k) by the formula:

Ai(k) = Fi × ik (i ≥ 1).

In this problem, your task is to calculate the following sum: A1(k) + A2(k) + ... + An(k). The answer can be very large, so print it modulo1000000007 (109 + 7).

Input

The first line contains two space-separated integers nk (1 ≤ n ≤ 1017; 1 ≤ k ≤ 40).

Output

Print a single integer — the sum of the first n elements of the sequence Ai(k) modulo 1000000007 (109 + 7).

Sample Input

Input
1 1
Output
1
Input
4 1
Output
34
Input
5 2
Output
316
Input
7 4
Output
73825
 
【分析】

  哈哈照着上一题的方法我就弄出来了~~
  应该是形如 x^k的形式,x很大,k较小的时候可以用二项式定理展开,求递推式然后矩阵加速。。
  
  就这样,qpow n次就好啦~ 代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Mod 1000000007
#define Maxn 110
#define LL long long struct node
{
LL a[Maxn][Maxn];
}t[]; LL c[Maxn][Maxn];
LL n,k; void init()
{
memset(c,,sizeof(c));
for(LL i=;i<=;i++) c[i][]=;
for(LL i=;i<=;i++)
for(LL j=;j<=;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%Mod;
} void get_m()
{
for(LL i=k+;i<=*k+;i++)
{
for(LL j=;j<=i-k-;j++) t[].a[i][j]=c[i-k-][j];
for(LL j=i+;j<=*k+;j++) t[].a[i][j]=;
}
for(LL i=;i<=k;i++)
{
for(LL j=;j<=i;j++) t[].a[i][j]=t[].a[i][j+k+]=c[i][j];
for(LL j=i+;j<=k;j++) t[].a[i][j]=t[].a[i][j+k+]=;
t[].a[i][*k+]=;
}
for(LL i=;i<=*k+;i++) t[].a[*k+][i]=;
t[].a[*k+][*k+]=t[].a[*k+][k]=;
} void get_un()
{
memset(t[].a,,sizeof(t[].a));
for(LL i=;i<=*k+;i++) t[].a[i][i]=;
} void mul(LL x,LL y,LL z)
{
for(LL i=;i<=*k+;i++)
for(LL j=;j<=*k+;j++)
{
t[].a[i][j]=;
for(LL l=;l<=*k+;l++)
t[].a[i][j]=(t[].a[i][j]+t[y].a[i][l]*t[z].a[l][j])%Mod;
}
t[x]=t[];
} void qpow(LL b)
{
get_un();
while(b)
{
if(b&) mul(,,);
mul(,,);
b>>=;
}
} int main()
{
init();
scanf("%lld%lld",&n,&k);
get_m();
qpow(n);
LL ans=;
for(LL i=;i<*k+;i++) ans=(ans+t[].a[*k+][i])%Mod;
printf("%lld\n",ans);
return ;
}

a


2016-09-26 16:11:26

 

【 CodeForces - 392C】 Yet Another Number Sequence (二项式展开+矩阵加速)的更多相关文章

  1. Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)

    题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...

  2. CodeForces 392C Yet Another Number Sequence 矩阵快速幂

    题意: \(F_n\)为斐波那契数列,\(F_1=1,F_2=2\). 给定一个\(k\),定义数列\(A_i=F_i \cdot i^k\). 求\(A_1+A_2+ \cdots + A_n\). ...

  3. 【HDU 3483】 A Very Simple Problem (二项式展开+矩阵加速)

    A Very Simple Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. CodeForces - 393E Yet Another Number Sequence

    Discription Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  5. hdu3483之二项式展开+矩阵快速幂

    A Very Simple Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  6. Number Sequence(快速幂矩阵)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...

  7. 【距离GDOI:128天】【POJ2778】DNA Sequence(AC自动机+矩阵加速)

    已经128天了?怎么觉得上次倒计时150天的日子还很近啊 ....好吧为了把AC自动机搞透我也是蛮拼的..把1030和这道题对比了无数遍...最终结论是...无视时间复杂度,1030可以用这种写法解. ...

  8. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  9. HDU 1005 Number Sequence

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

随机推荐

  1. 使用POI操作Excel使用小总结

    1. Workbook维护一个调色板,可以自定义设置56种颜色,下标从8到63. 用到颜色的地方,可以输入下标获取颜色,如CellStyle的setFillForegroundColor(); 2.C ...

  2. Unity3D 之3D游戏角色控制器运动

    3D运动,绑定了人形控制器后的一个简单的运动方法. using UnityEngine; using System.Collections; public class PlayerMove : Mon ...

  3. 几种工具反编译被编译好的DLL文件

    我们平时在工作中经常会遇到一些已经被编译后的DLL,而且更加麻烦是没有源代码可以进行修改,只能针对这个DLL的文件进行修改才能得到我们想要的结果:本文将通过一个实例来演示如果完成一个简单的修改;我们将 ...

  4. 利用Highcharts制作web图表学习(二)

        最近中海油的项目需要用到图表展示数据,最近还是一直边学习边开发,今天做了一个展示,炼化厂加热炉效率展示的柱状图,把代码贴出来,大家指点一下互相学习,我是通过数组给Highcharts绑定的值, ...

  5. 页面资源预加载(Link prefetch)功能加速你的页面加载速度

    有了浏览器缓存,为何还需要预加载? 用户可能是第一次访问网站,此时还无缓存 用户可能清空了缓存 缓存可能已经过期,资源将重新加载 用户访问的缓存文件可能不是最新的,需要重新加载 页面资源预加载/预读取 ...

  6. jeesite 一对多,对子表单独修改时出现 HV000030: No validator could be found for type:

    这是由于springmvc校验功能造成的,解决办法参见我的百度回答 http://zhidao.baidu.com/question/2141673418419314468

  7. 九度OJ 1079 手机键盘

    题目地址:http://ac.jobdu.com/problem.php?pid=1079 题目描述: 按照手机键盘输入字母的方式,计算所花费的时间 如:a,b,c都在“1”键上,输入a只需要按一次, ...

  8. vim 配置文件 ,高亮+自动缩进+行号+折叠+优化

    vim 配置文件 ,高亮+自动缩进+行号+折叠+优化 将一下代码copy到 用户目录下 新建文件为  .vimrc保存即可生效: 如果想所有用户生效 请修改 /etc/vimrc (建议先cp一份)& ...

  9. php精粹-编写高效的php代码 --- php设计模式

    1.选择一个最合适的设计模式 没有任何事物是完美的,也没有人说过设计模式一个严格的放之四海而皆准的解决方法.因此你可以改变这些模式,使它们更适合手头的工作.对于某些设计模式而言,他们就是所属程序固有的 ...

  10. word 2013 没有控件菜单怎么办,添加控件菜单

    方法/步骤   打开word软件,然后点击菜单栏中最左边的“文件”菜单项,如下图红色方框所示 2 点击文件后,就打开word的设置对话框,然后在左边的设置列表中点击“自定义功能区”,打开自定义功能区设 ...