很容易由算术基本定理知道,完全平方数就是所有质因子指数为偶数的数。而求得N以下的质因子,可由前两篇的公式知,由N!与p的关系求得。对于指数为p的,用N!除去就可以,因为p必定属于N以内,且无重复。

至于除法,在下实在不会,学得别人的,记录一下。

MOD数除法,可以由费马小定理a^(p-1)=1 (mod p)其中p为素数,求得。因为X/Y即是X*(1/Y),为乘上逆元,所以由费马小定理知a^(p-2)即是逆元。用数乘上即可。

而对于p-2比较大的情况,只能用快速幂取模的方法求解了。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const __int64 Maxp=10000010;
const __int64 MOD=1000000007; bool isprime[Maxp];
__int64 prime[Maxp],nprime;
__int64 adds[Maxp]; void Doprime(){
nprime=0;
memset(isprime,true,sizeof(isprime));
isprime[1]=false;
for(__int64 i=2;i<Maxp;i++){
if(isprime[i]){
prime[nprime++]=i;
for(__int64 j=i*i;j<Maxp;j+=i)
isprime[j]=false;
}
}
} __int64 Pow(__int64 anst,__int64 poe){
__int64 ret=1;
__int64 tmp=anst;
while(poe){
if(poe&1) ret=(ret*tmp)%MOD;
tmp=(tmp*tmp)%MOD;
poe=(poe>>1);
}
return ret;
} int main(){
__int64 anst;
Doprime();
adds[1]=1;
for(__int64 i=2;i<Maxp;i++)
adds[i]=(adds[i-1]*i)%MOD;
__int64 n;
while(scanf("%I64d",&n),n){
anst=1;
for(__int64 i=0;prime[i]<=n&&i<nprime;i++){
__int64 c=0;
for(__int64 t=prime[i];t<=n;t*=prime[i])
c+=(n/t);
if(c&1)
anst=(anst*prime[i])%MOD;
}
printf("%I64d\n",((adds[n]*Pow(anst,MOD-2))%MOD));
}
return 0;
}

  

HDU 4196的更多相关文章

  1. HDU 4196 Remoteland

    题意:给定一个n,然后让你从1-n中选出某些数乘起来,使得乘积最大,并且乘积必须是完全平方数. 思路:将1-n种每个数都分解素因子,把他们的素因子的幂加起来,如果是偶数,就说明可以构成完全平方数,乘起 ...

  2. Remoteland HDU - 4196

    题意: 给出一个n,在[1, n] 中挑选几个不同的数相乘,求能的到的最大完全平方数 解析: 最大的肯定是n!, 然后n!不一定是完全平方数 (我们知道一个完全平方数,质因子分解后,所有质因子的质数均 ...

  3. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  4. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  6. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  7. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  9. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

随机推荐

  1. python基于selenium+cv2+numpy实现登录某大型电商系统

    首先贴上我的安装包 一.selenium安装 I.打开pycharm,点击Settings,找到Project Interpreter,点击右边的下拉菜单下的show All...选项 II.点击sh ...

  2. MyBatis的关联映射和动态SQL

    CREATE TABLE tb_card ( id INT PRIMARY KEY AUTO_INCREMENT, CODE ) ); '); CREATE TABLE tb_person ( id ...

  3. Android线程间异步通信机制源码分析

    本文首先从整体架构分析了Android整个线程间消息传递机制,然后从源码角度介绍了各个组件的作用和完成的任务.文中并未对基础概念进行介绍,关于threadLacal和垃圾回收等等机制请自行研究. 基础 ...

  4. Dynamic编程

    Dynamic Binding 动态绑定 Binding:解析Type,member,operation的过程. 动态绑定将Binding从编译时延迟到运行时进行. 场景 编译时,程序员知道特定的fu ...

  5. Android 接入微信分享错误码-6

    官方的常见错误表示签名出错登录以后,需要重装微信(也就是清除微信本地数据)

  6. Kotlin基础语法:变量、函数、类、枚举、控制流

    一切都需要从基础学起! 前言: 在Kotlin语言中,没有分号的概念了,也就是每一行代码,都不在需要用分号结束了 点击查看代码 定义 常量:val --相当于java当中的final 变量:var 关 ...

  7. JavaScript私有方法

    some concepts: Java is from Sun Microsystem Inc., and JavaScript, called LiveScript before, is from ...

  8. MySQL 5.6 Reference Manual-14.1 Introduction to InnoDB

    14.1 Introduction to InnoDB 14.1.1 InnoDB as the Default MySQL Storage Engine 14.1.2 Checking InnoDB ...

  9. map参数值取代

    public static String processTemplate(String tpl, Map<String, ?> params){ Iterator<String> ...

  10. Jenkins介绍-安装-部署...

    1.背景      大师Martin Fowler对持续集成是这样定义的:持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通常每个成员每天至少集成一次,也就意味着每天可能会发生多次集成. ...