兔子与樱花 bzoj-4027 HEOI-2015

题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的,且没有被删除的节点,求在满足所有点界限的情况下,最多能删除的节点数。

注释:$1\le n\le 2\cdot 10^6$,$1\le m\le 10^5$,$0\le c_i\le 1000$。

想法:开始的时候很容易想到贪心,但是这东西对不对还两说

其实仔细一想这玩意儿tm显然啊??!

我们令c[i]+son[i]为这个点的优先级,我们显然选优先级高的。

如果我们选了一个优先级略低的,比如说是最高优先级的..子孙?这样的话我只会是的上面的优先级哐哐往上涨直到不合法

祖先的话删完了之后优先级高的迟早要删,这样的话底下的樱花上来就GG了。

最后,附上丑陋的代码... ...

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int maxn=2000010,maxm=maxn<<1;
using namespace std;
int n,m,pre[maxm],now[maxn],son[maxm],tot,c[maxn],a[maxn],ans;
bool ok;char ch;
void read(int &x){
for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
if (ok) x=-x;
}
void add(int a,int b){pre[++tot]=now[a],now[a]=tot,son[tot]=b;}
void dfs(int x){
for (int y=now[x];y;y=pre[y]) dfs(son[y]);
int cnt=0;
for (int y=now[x];y;y=pre[y]) a[++cnt]=c[son[y]];
sort(a+1,a+1+cnt);
for (int i=1;i<=cnt;i++){
if (c[x]+a[i]-1>m) break;
c[x]+=(a[i]-1),ans++;
}
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) read(c[i]);
for (int i=1,x,num;i<=n;i++){
read(num),c[i]+=num;
for (int j=1;j<=num;j++) read(x),x++,add(i,x);
}
dfs(1),printf("%d\n",ans);
//for (int i=1;i<=n;i++) printf("%d %d %d\n",i,f[i],g[i]);
return 0;
}

小结:对于这种贪心的题,我们还是需要证明一下的... ...

[bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp的更多相关文章

  1. bzoj4027 [HEOI2015]兔子与樱花 树上贪心

    [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1320  Solved: 762[Submit][Status][Di ...

  2. BZOJ4027 HEOI2015兔子与樱花(贪心)

    首先显然地如果某个点超过了最大负载,删掉它仍然是不合法的.删除某个点当前只会对其父亲产生影响,同一个节点的儿子显然应该按代价从小到大删.考虑如果删掉某个点之后他的父亲不能再删了,我们损失了父亲这个点, ...

  3. 【BZOJ4027】兔子与樱花(贪心)

    [BZOJ4027]兔子与樱花(贪心) 题面 BZOJ 洛谷 题解 很直观的一个感受就是对于每个节点, 考虑它的所有儿子,如果能删就删. 那么我们把所有儿子按照给删去后给父亲\(c[i]\)的贡献从小 ...

  4. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  5. 【BZOJ 4027】 4027: [HEOI2015]兔子与樱花 (贪心)

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  6. [HEOI2015]兔子与樱花(贪心)

    [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由\(n\)个树枝分叉点组成,编号从\ ...

  7. [BZOJ4027][HEOI2015]兔子与樱花 树形dp

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  8. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  9. [BZOJ4027][HEOI2015] 兔子与樱花

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

随机推荐

  1. java 分布式锁

    转自:http://www.hollischuang.com/archives/1716 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CA ...

  2. codevs1222 信与信封问题

    1222 信与信封问题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description John先生晚上写了n封信,并相应地写了 ...

  3. mybatis+oracle实现一对多,多对一查询

    首先创建表 学生表 create table stu(       id number(11) primary key,       name varchar2(255),       age num ...

  4. 前端常见面试题总结part2

    今天总结了几道,感觉非常有意思的题,有感兴趣的可以看下,有疑问请留言~ (答案在最后) 考察自执行函数的this指向 审题要细心 var n = 2, obj = { n:2, fn:(functio ...

  5. python 9:list.reverse()(倒置原列表,可恢复改变)

    bicycles = ['trek', 'cannondale', 'redline', 'specialized'] print(bicycles) bicycles.reverse() #倒置原列 ...

  6. POJ 1523 Tarjan求割点

    SPF Description Consider the two networks shown below. Assuming that data moves around these network ...

  7. 第一课trie 树 POJ 2001

    最短前缀(Openjudge上抄的) 总时间限制: 1000ms 内存限制: 65536kB 描述 一个字符串的前缀是从该字符串的第一个字符起始的一个子串.例如 "carbon"的 ...

  8. Windows7环境下Composer 安装包的Cache目录位置

    http://segmentfault.com/a/1190000000355928 https://getcomposer.org/doc/ 要说Composer的用法,以后再说,现在只记录wind ...

  9. iis 7.5 ftp site用户名不能是 'ftp'?

    在windows server 2008 r2上配置一个iis ftp site,创建了一个名为 ftp 的账号,并添加到允许规则中,可总是出现: Connected to ***.***.***.* ...

  10. 三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

    前言: 在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题和三维重建:SLAM的粒度和工程化问题 .大规模三维场景重建的尺度增大,因此相对于整个重 ...