兔子与樱花 bzoj-4027 HEOI-2015

题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的,且没有被删除的节点,求在满足所有点界限的情况下,最多能删除的节点数。

注释:$1\le n\le 2\cdot 10^6$,$1\le m\le 10^5$,$0\le c_i\le 1000$。

想法:开始的时候很容易想到贪心,但是这东西对不对还两说

其实仔细一想这玩意儿tm显然啊??!

我们令c[i]+son[i]为这个点的优先级,我们显然选优先级高的。

如果我们选了一个优先级略低的,比如说是最高优先级的..子孙?这样的话我只会是的上面的优先级哐哐往上涨直到不合法

祖先的话删完了之后优先级高的迟早要删,这样的话底下的樱花上来就GG了。

最后,附上丑陋的代码... ...

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int maxn=2000010,maxm=maxn<<1;
using namespace std;
int n,m,pre[maxm],now[maxn],son[maxm],tot,c[maxn],a[maxn],ans;
bool ok;char ch;
void read(int &x){
for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
if (ok) x=-x;
}
void add(int a,int b){pre[++tot]=now[a],now[a]=tot,son[tot]=b;}
void dfs(int x){
for (int y=now[x];y;y=pre[y]) dfs(son[y]);
int cnt=0;
for (int y=now[x];y;y=pre[y]) a[++cnt]=c[son[y]];
sort(a+1,a+1+cnt);
for (int i=1;i<=cnt;i++){
if (c[x]+a[i]-1>m) break;
c[x]+=(a[i]-1),ans++;
}
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) read(c[i]);
for (int i=1,x,num;i<=n;i++){
read(num),c[i]+=num;
for (int j=1;j<=num;j++) read(x),x++,add(i,x);
}
dfs(1),printf("%d\n",ans);
//for (int i=1;i<=n;i++) printf("%d %d %d\n",i,f[i],g[i]);
return 0;
}

小结:对于这种贪心的题,我们还是需要证明一下的... ...

[bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp的更多相关文章

  1. bzoj4027 [HEOI2015]兔子与樱花 树上贪心

    [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1320  Solved: 762[Submit][Status][Di ...

  2. BZOJ4027 HEOI2015兔子与樱花(贪心)

    首先显然地如果某个点超过了最大负载,删掉它仍然是不合法的.删除某个点当前只会对其父亲产生影响,同一个节点的儿子显然应该按代价从小到大删.考虑如果删掉某个点之后他的父亲不能再删了,我们损失了父亲这个点, ...

  3. 【BZOJ4027】兔子与樱花(贪心)

    [BZOJ4027]兔子与樱花(贪心) 题面 BZOJ 洛谷 题解 很直观的一个感受就是对于每个节点, 考虑它的所有儿子,如果能删就删. 那么我们把所有儿子按照给删去后给父亲\(c[i]\)的贡献从小 ...

  4. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  5. 【BZOJ 4027】 4027: [HEOI2015]兔子与樱花 (贪心)

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  6. [HEOI2015]兔子与樱花(贪心)

    [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由\(n\)个树枝分叉点组成,编号从\ ...

  7. [BZOJ4027][HEOI2015]兔子与樱花 树形dp

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  8. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  9. [BZOJ4027][HEOI2015] 兔子与樱花

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

随机推荐

  1. Tool:ProcessOn

    ylbtech-Tool:ProcessOn ProcessOn是一个面向垂直专业领域的作图工具和社交网络,成立于2011年6月并于2012年启动.ProcessOn将全球的专家顾问.咨询机构.BPM ...

  2. selenium3 + python3 - alert定位

    一.alert\confirm\prompt弹出框操作主要方法有: text:获取文本值 accept() :点击"确认" dismiss() :点击"取消"或 ...

  3. .net中实现aspnetpager分页

    第一步首先导入aspnetpager控件,然后再把他从工具箱中拖出,代码如下:  <webdiyer:AspNetPager ID="aspnetpager1" runat= ...

  4. windows 装XP系统

    笔记本型号:HPCQ40-506AX 1.在BIOS中更改启动顺序:将USB设为第一启动项2.插入装有PE系统的USB设备3.开机后一直按F124.到达选择系统界面,目前我的HPCQ40用其他系统进去 ...

  5. Linux通信之poll机制分析

    poll机制分析 韦东山 2009.12.10 所有的系统调用,基于都可以在它的名字前加上“sys_”前缀,这就是它在内核中对应的函数.比如系统调用open.read.write.poll,与之对应的 ...

  6. 时序分析:ARMA方法(平稳序列)

    憔悴到了转述中文综述的时候了........ 在统计学角度来看,时间序列分析是统计学中的一个重要分支, 是基于随机过程理论和数理统计学的一种重要方法和应用研究领域.  时间序列按其统计特性可分为平稳性 ...

  7. numpy安装失败-小失误

    1. 古老的方法:            安装python numpy库AMD64 失败,网上的教程是这样的:http://www.cnblogs.com/zhuyp1015/archive/2012 ...

  8. React Native - 使用Geolocation进行定位(获取当前位置、监听位置变化)

    1,getCurrentPosition()方法介绍 static getCurrentPosition(geo_success, geo_error?, geo_options? 该方法用于获取当前 ...

  9. hibernate与spring整合

    Spring与Hibernate整合关键点: 1) Hibernate的SessionFactory对象交给Spring创建: 2) hibernate事务交给spring的声明式事务管理. 1. D ...

  10. [POI2005]SKA-Piggy Banks tarjan 水题

    Code: #include<bits/stdc++.h> #define maxn 1000002 using namespace std; void setIO(string s) { ...