因为这里涉及到乘号的个数,那么我们可以用f[i][j]表示前i个位乘号为j个时的最大乘积

那么相比上一题就是多了一层枚举多少个乘号的循环,可以得出

f[i][r] = max(f[j - 1][r - 1], num(j, i));

num(j, i)表示第j位到第i位的数,j < i

然后注意要用高精度来计算。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 112;
struct node
{
int len, s[MAXN];
node() { len = 0; memset(s, 0, sizeof(s)); }
};
int n, k, a[MAXN];
node f[MAXN][10], sum[MAXN][MAXN]; node cut(int x, int y)
{
node ret;
for(int i = y; i >= x; i--)
ret.s[++ret.len] = a[i];
return ret;
} node cheng(node a, node b)
{
node ret;
REP(i, 1, a.len + 1)
REP(j, 1, b.len + 1)
{
ret.s[i + j - 1] += a.s[i] * b.s[j];
ret.s[i + j] += ret.s[i + j - 1] / 10;
ret.s[i + j - 1] %= 10;
}
int& i = ret.len = a.len + b.len - 1;
while(ret.s[i+1] > 0)
{
i++;
ret.s[i + 1] += ret.s[i] / 10;
ret.s[i] %= 10;
}
while(!ret.s[i] && i > 1) i--;
return ret;
} node max_node(node a, node b)
{
if(a.len > b.len) return a;
else if(a.len < b.len) return b;
else
{
for(int i = a.len; i >= 1; i--)
{
if(a.s[i] > b.s[i]) return a;
else if(a.s[i] < b.s[i]) return b;
}
}
return a;
} int main()
{
scanf("%d%d", &n, &k);
REP(i, 1, n + 1) scanf("%1d", &a[i]), f[i][0] = cut(1, i);
REP(i, 1, n + 1)
REP(j, i, n + 1)
sum[i][j] = cut(i, j);
REP(r, 1, k + 1) //乘号的循环在外面
REP(i, 1, n + 1)
for(int j = i; j > 1; j--) //这里大于1,边界要注意一下
f[i][r] = max_node(f[i][r], cheng(f[j - 1][r - 1], sum[j][i]));
node t = f[n][k];
for(int i = t.len; i >= 1; i--) printf("%d", t.s[i]);
puts("");
return 0;
}

caioj 1067动态规划入门(一维一边推5: 乘积最大(高精度版))的更多相关文章

  1. caioj 1063 动态规划入门(一维一边推1:美元和马克)

    这道题一开始我是这么想的 最后的答案肯定是某次的马克换回来的,但这个该怎么确定?? 实际上应该把范围缩小,只看最后一次和倒数第二次之间有什么联系. 可以发现,只有两种可能,最后一天换或者不换.换的话就 ...

  2. caioj 1066 动态规划入门(一维一边推4:护卫队)(分组型dp总结)

    很容易想到f[i]为前i项的最优价值,但是我一直在纠结如果重量满了该怎么办. 正解有点枚举的味道. 就是枚举当前这辆车与这辆车以前的组合一组,在能组的里面取最优的. 然后要记得初始化,因为有min,所 ...

  3. caioj 1065 动态规划入门(一维一边推3:合唱队形)

    就是最长上升子序列,但是要用n^2的算法. #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int ...

  4. caioj 1071 动态规划入门(二维一边推4:相似基因) (最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  5. caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  6. caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)

    caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示 ...

  7. caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))

    三维的与二维大同小异,看代码. #include<cstdio> #include<cstring> #include<algorithm> #define REP ...

  8. caioj 1072 动态规划入门(二维一边推5:最长公共子序列 LCSS加强版)

    在51nod刷到过同样的题,直接秒杀 见https://blog.csdn.net/qq_34416123/article/details/81697683 #include<cstdio> ...

  9. caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)

    我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...

随机推荐

  1. RGB与16进制色互转

      点击进入新版 <前端在线工具站> CSS, JavaScript 压缩YUI compressor, JSPacker...HTML特殊符号对照表PNG,GIF,JPG... Base ...

  2. Servlet学习(一)——Servlet的生命周期、执行过程、配置

    1.什么是Servlet Servlet 运行在服务端的Java小程序,是sun公司提供一套规范(接口),用来处理客户端请求.响应给浏览器的动态资源.但servlet的实质就是java代码,通过jav ...

  3. PostgreSQL+PostGIS

    PostGIS简介 PostGIS是对象关系型数据库系统PostgreSQL的一个扩展,PostGIS提供如下空间信息服务功能:空间对象.空间索引.空间操作函数和空间操作符.同时,PostGIS遵循O ...

  4. [转帖]关于Xilinx下Micro_Blaze中UartLite232外设的使用

    来源:https://blog.csdn.net/shen_you/article/details/78713746

  5. c#学习0217

    1 继承 继承 1 子类是否继承了父类的构造函数 答案:子类并没有继承父类的构造函数 但是子类或默认调用父类的无参数的构造函数 在子类中创建父类对象 这样子类才可以使用父类的成员 如果在父类中声明了有 ...

  6. swift语言点评十-Value and Reference Types

    结论:value是拷贝,Reference是引用 Value and Reference Types Types in Swift fall into one of two categories: f ...

  7. 优动漫PAINT-草地教程

    非常实用的草地教程,是场景控们绝对要学会的绘画技巧~更有配套草地笔刷~让场景绘画更简易~ 教程是简单,呃.... 没有优动漫PAINT软件肿么办? 别着急,╭(╯^╰)╮ 小编给你送来了 齐全的哟? ...

  8. SFTP使用key文件登录

    命令: sftp -oPort= -oIdentityFile=/root/.ssh/user.priv user@39.39.100.100 命令选项: -o ssh_option Can be u ...

  9. 洛谷 P1373 小a和uim之大逃离 (差值型dp总结)

    这道题和多米诺骨牌那道题很像 ,都是涉及到差值的问题. 这道题是二维的,同时要取模. 这种题,因为当前的决策有后效性,会影响到差值,所以直接把 差值作为维度,然后计算答案的时候把差值为0的加起来就行了 ...

  10. Docker之Mysql安装及配置

    原文:Docker之Mysql安装及配置 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zhaobw831/article/details/8014 ...