time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

PolandBall is a young, clever Ball. He is interested in prime numbers. He has stated a following hypothesis: “There exists such a positive integer n that for each positive integer m number n·m + 1 is a prime number”.

Unfortunately, PolandBall is not experienced yet and doesn’t know that his hypothesis is incorrect. Could you prove it wrong? Write a program that finds a counterexample for any n.

Input

The only number in the input is n (1 ≤ n ≤ 1000) — number from the PolandBall’s hypothesis.

Output

Output such m that n·m + 1 is not a prime number. Your answer will be considered correct if you output any suitable m such that 1 ≤ m ≤ 103. It is guaranteed the the answer exists.

Examples

input

3

output

1

input

4

output

2

Note

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.

For the first sample testcase, 3·1 + 1 = 4. We can output 1.

In the second sample testcase, 4·1 + 1 = 5. We cannot output 1 because 5 is prime. However, m = 2 is okay since 4·2 + 1 = 9, which is not a prime number.

【题目链接】:http://codeforces.com/contest/755/problem/A

【题解】



枚举m从1..1000就好;

(special way 注意到当m=n+2的时候,n*m+1=(n+1)^2,而当m=n-2的时候,n*m+1=(n-1)^2,所以对n分类讨论一下就可以了.)

代码给的是枚举的.



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int MAXN = 110; int n; bool is(int k)
{
int len = sqrt(k);
rep1(j,2,len)
if (k%j==0)
{
return false;
}
return true;
} int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(n);
rep1(m,1,1000)
{
int k = n*m+1;
//cout << k <<endl;
if (!is(k))
{
printf("%d\n",m);
return 0;
}
}
return 0;
}

【codeforces 755A】PolandBall and Hypothesis的更多相关文章

  1. 【codeforces 755B】PolandBall and Game

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  2. 【codeforces 755D】PolandBall and Polygon

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【codeforces 755C】PolandBall and Forest

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  4. 【codeforces 755F】PolandBall and Gifts

    [题目链接]:http://codeforces.com/contest/755/problem/F [题意] n个人; 计划是每个人都拿一个礼物来送给一个除了自己之外的人; 且如果一个人没有送出礼物 ...

  5. 【codeforces 755E】PolandBall and White-Red graph

    [题目链接]:http://codeforces.com/contest/755/problem/E [题意] 给你n个节点; 让你在这些点之间接若干条边;构成原图(要求n个节点都联通) 然后分别求出 ...

  6. Codeforces 755A:PolandBall and Hypothesis(暴力)

    http://codeforces.com/problemset/problem/755/A 题意:给出一个n,让你找一个m使得n*m+1不是素数. 思路:暴力枚举m判断即可. #include &l ...

  7. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  8. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  9. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

随机推荐

  1. C++基于矢量图形库cairo画图图形

    //sudo apt-get install libcairo2-dev //pkg-config --cflags --libs cairo //-I/usr/include/cairo -I/us ...

  2. A题之拼音转数字

    输入是一个仅仅包括拼音的字符串,请输出相应的数字序列.转换关系例如以下: 描写叙述: 拼音 yi er san si wu liu qi ba jiu       阿拉伯数字 1 2 3 4 5 6 ...

  3. 13.Zookeeper的java客户端API使用方法

    转自:https://blog.csdn.net/jiuqiyuliang/article/details/56012027

  4. ClickOnce

    Clic WPF ClickOnce应用程序IIS部署发布攻略   WPF程序非常适合公司内网使用,唯一缺点就是客户端要安装.net框架4.0.优势也很明显,在客户端运行的是一个WinForm程序,自 ...

  5. Android Material风格的应用(二)--RecyclerView

    添加RecyclerView Android Material风格的应用(一)--AppBar TabLayoutAndroid Material风格的应用(二)--RecyclerViewAndro ...

  6. Ten ways to improve the performance of large tables in MySQL--转载

    原文地址:http://www.tocker.ca/2013/10/24/improving-the-performance-of-large-tables-in-mysql.html Today I ...

  7. [转]C#连接操作mysql实例

    本文转自:http://hi.baidu.com/zhqngweng/item/c4d2520cb7216877bfe97edf 第三方组件:Mysql.Data.dll说明:去官方网站下载Mysql ...

  8. 并发,two

    引言 为了更加形象的描述并发的基础知识,因此本文LZ采用了园子里一度大火的标题形式--"没听说过XXXX,就不要说你XXXX了".希望能够给猿友们一个醒目的警醒,借此来普及并发的基 ...

  9. LA 3989 - Ladies' Choice 稳定婚姻问题

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  10. 11.3 Android显示系统框架_最简单的surface测试程序

    APP有一个surface(界面),其有多个buffer用来存放界面数据,这些buffer是向surfaceflinger申请的: 因此我们编写的surface测试程序步骤: (1)获得surface ...