【codeforces 755A】PolandBall and Hypothesis
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
PolandBall is a young, clever Ball. He is interested in prime numbers. He has stated a following hypothesis: “There exists such a positive integer n that for each positive integer m number n·m + 1 is a prime number”.
Unfortunately, PolandBall is not experienced yet and doesn’t know that his hypothesis is incorrect. Could you prove it wrong? Write a program that finds a counterexample for any n.
Input
The only number in the input is n (1 ≤ n ≤ 1000) — number from the PolandBall’s hypothesis.
Output
Output such m that n·m + 1 is not a prime number. Your answer will be considered correct if you output any suitable m such that 1 ≤ m ≤ 103. It is guaranteed the the answer exists.
Examples
input
3
output
1
input
4
output
2
Note
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.
For the first sample testcase, 3·1 + 1 = 4. We can output 1.
In the second sample testcase, 4·1 + 1 = 5. We cannot output 1 because 5 is prime. However, m = 2 is okay since 4·2 + 1 = 9, which is not a prime number.
【题目链接】:http://codeforces.com/contest/755/problem/A
【题解】
枚举m从1..1000就好;
(special way 注意到当m=n+2的时候,n*m+1=(n+1)^2,而当m=n-2的时候,n*m+1=(n-1)^2,所以对n分类讨论一下就可以了.)
代码给的是枚举的.
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int MAXN = 110;
int n;
bool is(int k)
{
int len = sqrt(k);
rep1(j,2,len)
if (k%j==0)
{
return false;
}
return true;
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(n);
rep1(m,1,1000)
{
int k = n*m+1;
//cout << k <<endl;
if (!is(k))
{
printf("%d\n",m);
return 0;
}
}
return 0;
}
【codeforces 755A】PolandBall and Hypothesis的更多相关文章
- 【codeforces 755B】PolandBall and Game
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【codeforces 755D】PolandBall and Polygon
time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【codeforces 755C】PolandBall and Forest
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【codeforces 755F】PolandBall and Gifts
[题目链接]:http://codeforces.com/contest/755/problem/F [题意] n个人; 计划是每个人都拿一个礼物来送给一个除了自己之外的人; 且如果一个人没有送出礼物 ...
- 【codeforces 755E】PolandBall and White-Red graph
[题目链接]:http://codeforces.com/contest/755/problem/E [题意] 给你n个节点; 让你在这些点之间接若干条边;构成原图(要求n个节点都联通) 然后分别求出 ...
- Codeforces 755A:PolandBall and Hypothesis(暴力)
http://codeforces.com/problemset/problem/755/A 题意:给出一个n,让你找一个m使得n*m+1不是素数. 思路:暴力枚举m判断即可. #include &l ...
- 【codeforces 415D】Mashmokh and ACM(普通dp)
[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...
- 【codeforces 707E】Garlands
[题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...
- 【codeforces 707C】Pythagorean Triples
[题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...
随机推荐
- [Node & Tests] Intergration tests for Authentication
For intergration tests, always remember when you create a 'mass' you should aslo clean up the 'mass' ...
- UVA 11557 - Code Theft (KMP + HASH)
UVA 11557 - Code Theft 题目链接 题意:给定一些代码文本.然后在给定一个现有文本,找出这个现有文本和前面代码文本,反复连续行最多的这些文本 思路:把每一行hash成一个值.然后对 ...
- HDU 5389 Zero Escape (MUT#8 dp优化)
[题目链接]:pid=5389">click here~~ [题目大意]: 题意: 给出n个人的id,有两个门,每一个门有一个标号,我们记作a和b,如今我们要将n个人分成两组,进入两个 ...
- c3p0的经常使用配置方式
1:第一种方式很easy c3p0.driverClass=com.mysql.jdbc.Driver c3p0.jdbcUrl=jdbc:mysql://localhost:3308/databas ...
- mahout中KMeans算法
本博文主要内容有 1.kmeans算法简介 2.kmeans执行过程 3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解 5.mahout的kmeans算法实现 ...
- python文件的操作
文件的操作,归根结底就只有两种:打开文件.操作文件 一.打开文件:文件句柄 = open('文件路径', '模式') python中打开文件有两种方式,即:open(...) 和 file(...) ...
- amazeui学习笔记--css(布局相关1)--网格Grid
amazeui学习笔记--css(布局相关1)--网格Grid 一.总结 基本使用 1.div+class布局:amaze里面采取的就是div+class的布局方式 <div class=&q ...
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- PythonOOP面向对象编程3
override 函数重写 重写是在自定义的类内添加相应的方法,让自定义的类生成的对象(实例)像内建对象一样进行内建的函数操作 对象转字符串函数重写 repr(obj) 返回一个能代表此对象的表达式字 ...
- [TypeScript] Union Types and Type Aliases in TypeScript
Sometimes we want our function arguments to be able to accept more than 1 type; e.g. a string or an ...