R语言 PCA
1、关键点
综述:主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理的从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。
#主成分分析 是将多指标化为少数几个综合指标的一种统计分析方法
主成分分析是一种通过降维技术把多个变量化成少数几个主成分的方法,这些主成分能够反映原始变量的大部分信息,他们通常表示为原始变量的线性组合。
2、函数总结
#R中作为主成分分析最主要的函数是princomp()函数
#princomp()主成分分析 可以从相关阵或者从协方差阵做主成分分析
#summary()提取主成分信息
#loadings()显示主成分分析或因子分析中载荷的内容
#predict()预测主成分的值
#screeplot()画出主成分的碎石图
#biplot()画出数据关于主成分的散点图和原坐标在主成分下的方向
3、案例
#现有30名中学生身高、体重、胸围、坐高数据,对身体的四项指标数据做主成分分析。
#1.载入原始数据
test<-data.frame(
X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,
140, 161, 158, 140, 137, 152, 149, 145, 160, 156,
151, 147, 157, 147, 157, 151, 144, 141, 139, 148),
X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,
29, 47, 49, 33, 31, 35, 47, 35, 47, 44,
42, 38, 39, 30, 48, 36, 36, 30, 32, 38),
X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,
64, 78, 78, 67, 66, 73, 82, 70, 74, 78,
73, 73, 68, 65, 80, 74, 68, 67, 68, 70),
X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,
74, 84, 83, 77, 73, 79, 79, 77, 87, 85,
82, 78, 80, 75, 88, 80, 76, 76, 73, 78)
)
#2.作主成分分析并显示分析结果
test.pr<-princomp(test,cor=TRUE) #cor是逻辑变量当cor=TRUE表示用样本的相关矩阵R做主成分分析
当cor=FALSE表示用样本的协方差阵S做主成分分析
summary(test.pr,loadings=TRUE) #loading是逻辑变量当loading=TRUE时表示显示loading 的内容
#loadings的输出结果为载荷是主成分对应于原始变量的系数即Q矩阵
分析结果含义
#----Standard deviation 标准差 其平方为方差=特征值
#----Proportion of Variance 方差贡献率
#----Cumulative Proportion 方差累计贡献率
#由结果显示 前两个主成分的累计贡献率已经达到96% 可以舍去另外两个主成分 达到降维的目的
因此可以得到函数表达式 Z1=-0.497X'1-0.515X'2-0.481X'3-0.507X'4
Z2= 0.543X'1-0.210X'2-0.725X'3-0.368X'4
#4.画主成分的碎石图并预测
screeplot(test.pr,type="lines")
p<-predict(test.pr)
由碎石图可以看出 第二个主成分之后 图线变化趋于平稳 因此可以选择前两个主成分做分析
R语言 PCA的更多相关文章
- 主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...
- 主成分分析(PCA)原理及R语言实现 | dimension reduction降维
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...
- R语言主成分分析(PCA)
数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] " ...
- 【转】R语言主成分分析(PCA)
https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') ...
- R语言 推荐算法 recommenderlab包
recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...
- 数据分析R语言1
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.c ...
- R语言重要数据集分析研究——需要整理分析阐明理念
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标 ...
- 主成分分析、实例及R语言原理实现
欢迎批评指正! 主成分分析(principal component analysis,PCA) 一.几何的角度理解PCA -- 举例:将原来的三维空间投影到方差最大且线性无关的两个方向(二维空间). ...
- R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算 ...
随机推荐
- openStack aio nova service-list neutron ext-list
- git-更改本地和远程分支的名称
git branch -m old_branch new_branch # Rename branch locally git push origin :old_branch # Delete the ...
- MSP430:管脚的第二功能选择
之前在使用PWM,AD时候用到过第二功能,不过都是copy没有注意过PXSEL究竟怎么设置,今天在设置晶振管脚时候遇到了麻烦,细致看了一下其实很简单,在SPEC的最后详细讲了每个管脚如何设置为其他功能 ...
- 49.Ext.form.TextField()基本用法
转自:https://blog.csdn.net/toudoulin/article/details/6719163 var textfieldName = new Ext.form.TextFiel ...
- Euclid(几何)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2831 题意:已知A,B,C,D,E,F的坐标, ...
- Python基础数据类型(五) dict字典
字典dict{} 字典数字自动排序 enumerate 枚举 for i,k in enumerate(dic,1) #第二个参数默认不写就是0 ---枚举 print(i,k) dict,以{}来表 ...
- 在vue项目npm run build后,index.html中引入css和js 报MIME type问题
问题: 1.在vue项目中,build打包后,index页面打开会报错, MIME type ('text/html') ;报错内容:because its MIME type ('text/html ...
- python自动化测试学习笔记-6redis应用
上次我们学到了redis的一些操作,下面来实际运用以下. 这里我们先来学习一下什么是cookie和session. 什么是Cookie 其实简单的说就是当用户通过http协议访问一个服务器的时候,这个 ...
- C#学习-程序集和反射
准备项目 1.新建一个空的解决方案MyProj.sln 2.在该解决方案下,建一个控制台项目P01.csproj 3.在该项目下,自己新建一个类MyFirstClass.cs 查看解决方案MyProj ...
- mysql有关时间是问题
mysql中有关时间的类型 date/datetime/time/timestamp/year date:表示日期的类型,格式为:“yyyy-MM-dd” dateTime:表示日期时间的类型,格式 ...