https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113

基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。

 
Input
第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9)
第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)
Output
共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。
Input示例
2 3
1 1
1 1
Output示例
4 4
4 4
 #include <cstdio>

 const int mod(1e9+);
const int N(1e6+);
int n,m;
struct Matrix {
long long e[][];
Matrix operator * (Matrix x) const
{
Matrix tmp;
for(int i=; i<n; ++i)
for(int j=; j<n; ++j)
{
tmp.e[i][j]=;
for(int k=; k<n; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; int Presist()
{
scanf("%d%d",&n,&m);
for(int i=; i<n; ++i)
for(int j=; j<n; ++j)
scanf("%lld",&ans.e[i][j]); base=ans;
for(m--; m; m>>=,base=base*base)
if(m&) ans=ans*base;
for(int i=; i<n; ++i)
{
for(int j=; j<n; ++j)
printf("%lld ",ans.e[i][j]);
puts("");
}
return ;
} int Aptal=Presist();
int main(){;}

51Nod——T 1113 矩阵快速幂的更多相关文章

  1. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  2. 51nod 1113 矩阵快速幂( 矩阵快速幂经典模板 )

    1113 矩阵快速幂 链接:传送门 思路:经典矩阵快速幂,模板题,经典矩阵快速幂模板. /******************************************************* ...

  3. NOD 1113矩阵快速幂

    基准时间限制:3 秒 空间限制:131072 KB 分值: 40    给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大,只需要输出每个元素Mod (10^ ...

  4. 51nod 矩阵快速幂(模板题)

    1113 矩阵快速幂  基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大 ...

  5. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  6. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  7. 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)

    接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...

  8. 51Nod 1126 求递推序列的第N项(矩阵快速幂)

    #include <iostream> #include <algorithm> #include <cmath> #define MOD 7 #define N ...

  9. 51nod 1122 机器人走方格 V4 【矩阵快速幂】

    首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio ...

随机推荐

  1. [Swift通天遁地]二、表格表单-(3)在表格中嵌套另一个表格并使Cell的高度自适应

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  2. [Swift通天遁地]九、拔剑吧-(16)搭建卡片页面:Card Peek/Pop动态切换界面

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  3. 安卓5.0新特性之Palette

    根据图片来决定标题的颜色和标题栏的背景色,这样视觉上更具有冲击力和新鲜感,而不像统一色调那样呆板. Palette这个类能提取以下突出的颜色: Vibrant(充满活力的) Vibrant dark( ...

  4. Scala-基础-数据类型

    import junit.framework.TestCase import org.junit.Test import scala.runtime.RichByte //数据类型 class Dem ...

  5. Android Unable to add window -- token android.os.BinderProxy@3a067204 is not valid错误分析记录

    打开APP时,出现闪退的情况,查看android studio报错信息,主要为: Unable to add window -- token android.os.BinderProxy@3a0672 ...

  6. (转)分布式文件存储FastDFS(三)FastDFS配置

    http://blog.csdn.net/xingjiarong/article/details/50559768 在上一节中我们一起搭建了一个单节点的FastDFS系统,但是仅仅将系统搭建起来是远远 ...

  7. windows环境安装python虚拟环境

    虚拟环境安装参考 https://www.cnblogs.com/suke99/p/5355894.html workon环境变量配置参照 https://www.cnblogs.com/jiuyan ...

  8. CDR真实图片转水墨画效果制作教程

    CorelDRAW创造性滤镜组是最具有创造力的滤镜,使用里面的散开滤镜能够实现类似于水墨的表现手法,然后再结合图层的合并模式,让您的图片产生意想不到的视觉效果.本文将利用CorelDRAW软件中提供的 ...

  9. ubuntu14.04禁用USB外存储设备

    ubuntu 14.04中禁用usb外存储设备: 在网上找了很多方法,大概都是下面的命令,而实际测试的时候没有什么作用. gsettings set org.gnome.desktop.media-h ...

  10. demo__webpack

    webpack 中使用的包更新非常频繁,使用方式可能很快就会改变,解决方式 看webapck文档 和 包的使用文档 看包的源码 其他... 环境 win10 + webstorm 2019.1.3 + ...