[BZOJ2724][Violet 6]蒲公英
[BZOJ2724][Violet 6]蒲公英
试题描述
.gif)
输入
.gif)
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
输出
.gif)
输入示例
输出示例
数据规模及约定
.gif)
修正下:
n <= 40000, m <= 50000
题解
分块,先预处理出 f[i][j] 表示第 i 块到第 j 块的众数,枚举起点 i 然后扫一遍就好了。
其次是询问,对于一个询问 [ql, qr],其中 ql 属于块 l,qr 属于块 r,众数要么是 f[l+1][r-1],要么是不完整块中的数,所以我们需要搞一个 calc(l, r, x) 功能,表示询问 [l, r] 中 x 出现的次数,有了这个功能后就可以做到把答案初始设为 f[l+1][r-1](O(1)),然后 O(sqrt(n)) 暴力枚举不完整块中的数,如果出现次数比当前的多,就更新答案。
这个 calc() 函数可以这样搞:把所有数离散,每个数的位置记下来,然后当询问 calc(l, r, x) 在 x 的位置序列上二分一下就可以计算了。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 40010
#define maxq 210
int n, m, num[maxn], A[maxn], st[maxq], en[maxq], bl[maxn], cntb, f[maxq][maxq], cntn[maxn]; vector <int> pos[maxn];
int calc(int l, int r, int x) {
return upper_bound(pos[x].begin(), pos[x].end(), r) - lower_bound(pos[x].begin(), pos[x].end(), l);
}
int query(int ql, int qr) {
int l = bl[ql], r = bl[qr];
if(r - l <= 1) {
int ans = A[ql], mx = calc(ql, qr, ans);
for(int i = ql + 1; i <= qr; i++) {
int tmp = calc(ql, qr, A[i]);
if(mx < tmp || (mx == tmp && ans > A[i])) ans = A[i], mx = tmp;
}
return ans;
}
int ans = f[l+1][r-1], mx = calc(ql, qr, ans);
for(int i = ql; i <= en[l]; i++) {
int tmp = calc(ql, qr, A[i]);
if(mx < tmp || (mx == tmp && ans > A[i])) ans = A[i], mx = tmp;
}
for(int i = st[r]; i <= qr; i++) {
int tmp = calc(ql, qr, A[i]);
if(mx < tmp || (mx == tmp && ans > A[i])) ans = A[i], mx = tmp;
}
return ans;
} int main() {
n = read(); m = read();
int siz = (int)sqrt(n + .5);
for(int i = 1; i <= n; i++) {
num[i] = A[i] = read();
int p = (i - 1) / siz + 1; cntb = p;
if(!st[p]) st[p] = i;
en[p] = i;
bl[i] = p;
} sort(num + 1, num + n + 1);
for(int i = 1; i <= n; i++) A[i] = lower_bound(num + 1, num + n + 1, A[i]) - num;
for(int i = 1; i <= cntb; i++) {
memset(cntn, 0, sizeof(cntn));
for(int j = st[i]; j <= n; j++) {
cntn[A[j]]++;
int r = bl[j];
if(r > i && !f[i][r]) f[i][r] = f[i][r-1];
if(!f[i][r] || cntn[f[i][r]] < cntn[A[j]] || (cntn[f[i][r]] == cntn[A[j]] && f[i][r] > A[j]))
f[i][r] = A[j];
}
}
for(int i = 1; i <= n; i++) pos[A[i]].push_back(i); int x = 0;
while(m--) {
int l = (read() + x - 1) % n + 1, r = (read() + x - 1) % n + 1;
if(l > r) swap(l, r);
int tmp = query(l, r);
printf("%d\n", num[tmp]);
x = num[tmp];
} return 0;
}
[BZOJ2724][Violet 6]蒲公英的更多相关文章
- BZOJ2724 [Violet 6]蒲公英 分块
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...
- bzoj2724: [Violet 6]蒲公英(离散化+分块)
我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...
- bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式
这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...
- 【分块】bzoj2724 [Violet 6]蒲公英
分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...
- bzoj2724: [Violet 6]蒲公英(分块)
传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...
- 【BZOJ2724】[Violet 6]蒲公英 分块+二分
[BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...
- BZOJ 2724: [Violet 6]蒲公英
2724: [Violet 6]蒲公英 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1633 Solved: 563[Submit][Status ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- BZOJ_2724_[Violet 6]蒲公英_分块
BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...
随机推荐
- Bootstrap系列 -- 29. 按钮组
单个按钮在Web页面中的运用有时候并不能满足我们的业务需求,常常会看到将多个按钮组合在一起使用,比如富文本编辑器里的一组小图标按钮等 按钮组和下拉菜单组件一样,需要依赖于button.js插件才能正常 ...
- javascript继承(七)—用继承的方式实现照片墙功能
照片墙DEMO下载 注意:图片有四种类型:1可放大:2可拖动:3既可放大也可拖动:4都不行.由于每个图片的构造函数不同而不同(目前在火狐上调试的,其它的浏览器可能不行,请见谅,主要讲继承的思想.以后会 ...
- jQuery理解之(一)动画与特效
本节主要降级和学习jQuery的自动显隐,渐入渐出.飞入飞出.自定义动画等. 1.显示和隐藏hide()和show() 对于动画来说,显示和隐藏是最基本的效果之一,本节简单介绍jQuery的显示和隐藏 ...
- github的初次体验及管理代码的心得
周六早上的课上,助教给我们演示了一遍如何上传和下载代码库,新建代码库等等,但是是在linux上的,而我的笔记本的操作系统是win7的.而在教室中的尝试因为网络原因,虽然可以上github的网站,但是下 ...
- 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...
- FastDFS在centos上的安装配置与使用
FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合以文件为载体的在线服务.(百 ...
- 【kAri OJ】621. 廖神的树
时间限制 3000 ms 内存限制 65536 KB 题目描述 廖神和男神在植树节的时候准备玩一个奇怪的游戏,他们现在有一个被分割成n*n个格子的矩形土地,他们现在准备往这个地里种树,但这个种树游戏必 ...
- 【CodeForces 602B】G - 一般水的题2-Approximating a Constant Range
Description When Xellos was doing a practice course in university, he once had to measure the intens ...
- 【HDU 5399】Too Simple
题 Description Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai th ...
- 决策树笔记:使用ID3算法
决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...