逻辑回归是一个形式是Y=1/(1+E(-X))的函数,它的特点是:

1, 当X>0,随着X增大,Y很快的接近1;

2,当x<0,随着X的减小,Y很快的接近0;

3,当X=0时,Y=1/2。

由于逻辑回归的这种特性(在0-1之间连续),它被用来判断一个学习算法是否正确。

除了正确和不正确的结果之外,使用逻辑回归的好处在于,它还能告诉你,你离正确的结果还差多少,从而引导你向正确的方向前进。因此它常常和梯度上升的算法结合起来。下面的代码体现了这样的例子:

输入参数1是100行,2列的矩阵;

输入参数2是100行,1列的矩阵,取值都是0或1;

def gradAscent(dataMatIn, classLabels):
   # ❶(以下两行)转换为NumPy矩阵数据类型
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1)) 初始化成(1,1)
    for k in range(maxCycles):
        #❷(以下三行)矩阵相乘
        h = sigmoid(dataMatrix*weights)矩阵相乘,得到100行,1列的矩阵,利用逻辑回归把它变成100行1列的矩阵,每个值介于0到1之间,h是对label的一个估计
        error = (labelMat - h)估计与实际值之间差距为error,error也是一个100行1列的矩阵;
        weights = weights + alpha * dataMatrix.transpose()* error后面3项乘的结果是1行2列的矩阵,代表了估算的结果与实际结果是超了还是低了,从而修改weights。
    return weights

由于每次迭代都会导致weights朝labelMat的方向靠近,因此经过500次的循环,最终能得到较好的结果,能很好的确定weights的两个参数。

当然上述代码存在一个问题,它每次循环都要扫描dataMatrix中所有的行,这对大型的数据是不可容忍的,因此,有了另外一种随机梯度上升的算法。它每次只看一行数据,看它的估算与结果的距离,根据距离调整weights。

这个算法仍然存在问题,因为它受每个训练数据影响是一样的,所以可以通过设置,让后面的实例对数据的影响逐渐变小,从而确保学习的快速收连。

如何处理缺失数据是机器学习中的重要课题,它也严重影响逻辑回归的准确性。

----

总之,如果只是要判断一个学习算法是否准确,有无数种方法,为什么一定要选择逻辑回归这个奇怪的函数。我的理解是,逻辑回归函数它能反映出一种方向,能够把“是否正确”转变成“有多么正确或者多么错误”,正因为这个转变,可以让机器不断的向正确的方向前进,最终实现准确的预测。

机器学习:logistic回归的更多相关文章

  1. 机器学习——Logistic回归

    1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...

  2. 机器学习——Logistic回归

    参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmo ...

  3. 机器学习——logistic回归,鸢尾花数据集预测,数据可视化

    0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...

  4. 机器学习--Logistic回归

    logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or fals ...

  5. coursera机器学习-logistic回归,正则化

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  6. 机器学习 Logistic 回归

    Logistic regression 适用于二分分类的算法,用于估计某事物的可能性. logistic分布表达式 $ F(x) = P(X<=x)=\frac{1}{1+e^{\frac{-( ...

  7. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  8. 吴恩达-机器学习+Logistic回归分类方案

  9. 机器学习简易入门(四)- logistic回归

    摘要:使用logistic回归来预测某个人的入学申请是否会被接受 声明:(本文的内容非原创,但经过本人翻译和总结而来,转载请注明出处) 本文内容来源:https://www.dataquest.io/ ...

  10. 机器学习(4)之Logistic回归

    机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...

随机推荐

  1. WinForm给控件加入hint文字

    本文代码主要是参考别人的,仅为个人记录,方面后续使用~ 效果图: 主要代码在一个Win32Utility类中,代码如下: public static class Win32Utility { [Dll ...

  2. JVM中显示锁基础AbstractQueuedSynchronizer

    在研究AbstractQueuedSynchronizer的时候我是以ReentrantLock入手的.所以理所当然会设计到一些ReentrantLock的方法.因为网上已经有很多关于AQS的文章了, ...

  3. php对mysql数据库简单连接操作

    前些阵子忙完了公司前端静态页面的事情了之后,简单学习了下php的基础知识,今天想了想回顾一下php连接数据库的方式,写一下随笔存一下看看 php连接数据库端口和新建数据库 <?php $serv ...

  4. andriod GridView

    <?xml version="1.0" encoding="UTF-8"?> <GridView xmlns:android="ht ...

  5. UC如被百度控股,手机qq浏览器改如何进攻和防守

    很早以前在公司内部论坛里写的一篇文章,绯闻已经过过去了,现在已物事人物,UC已有阿里大靠山了. ----------------------------------------------- 据网络媒 ...

  6. iOS面试中常见的算法题目

    一.前言 这里是在iOS求职中自己遇到的算法题,希望对大家有所帮助.不定期更新.如果大家想在线运行代码调试,可以将代码拷贝到这里.然后进行调试.下面就是常见的算法题目. 二.正文 1.就n的阶乘.(这 ...

  7. 【读书笔记】iOS-UIWindow-WindowLevel

    WindowLevel是UIWindow的一个属性.系统定义的一共有3种. UIKIT_EXTERN const UIWindowLevel UIWindowLevelNormal; UIKIT_EX ...

  8. CocoaPods的使用

    一.安装Cocoapods步骤:(在终端安装) 1.在安装前,需确保已经安装了Ruby环境 mac 下安装Ruby环境步骤: (1).安装RVM $ curl -L https://get.rvm.i ...

  9. JDBC增删查改(使用配置文件)

    JDBCDemo2.java package com.zhangbz.jdbc; import java.sql.Connection; import java.sql.ResultSet; impo ...

  10. .net WEB程序访问locahost和IP使用

    1.服务都在本机调用用 localost 2.部署站点访问时用ip