在前两篇文章中,我介绍了《训练自己的haar-like特征分类器并识别物体》的前三个步骤:

1.准备训练样本图片,包括正例及反例样本

2.生成样本描述文件

3.训练样本

4.目标识别

==============

本文将着重说明最后一个阶段——目标识别,也即利用前面训练出来的分类器文件(.xml文件)对图片中的物体进行识别,并在图中框出在该物体。由于逻辑比较简单,这里直接上代码:

int _tmain(int argc, _TCHAR* argv[])
{
char *cascade_name = CASCADE_HEAD_MY; //上文最终生成的xml文件命名为"CASCADE_HEAD_MY.xml"
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); //加载xml文件 if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
system("pause");
return -1;
}
storage = cvCreateMemStorage(0);
cvNamedWindow( "face", 1 ); const char* filename = "(12).bmp";
IplImage* image = cvLoadImage( filename, 1 ); if( image )
{
detect_and_draw( image ); //函数见下方
cvWaitKey(0);
cvReleaseImage( &image );
}
cvDestroyWindow("result");
return 0;
}
 void detect_and_draw(IplImage* img )
{
double scale=1.2;
static CvScalar colors[] = {
{{,,}},{{,,}},{{,,}},{{,,}},
{{,,}},{{,,}},{{,,}},{{,,}}
};//Just some pretty colors to draw with //Image Preparation
//
IplImage* gray = cvCreateImage(cvSize(img->width,img->height),,);
IplImage* small_img=cvCreateImage(cvSize(cvRound(img->width/scale),cvRound(img->height/scale)),,);
cvCvtColor(img,gray, CV_BGR2GRAY);
cvResize(gray, small_img, CV_INTER_LINEAR); cvEqualizeHist(small_img,small_img); //直方图均衡 //Detect objects if any
//
cvClearMemStorage(storage);
double t = (double)cvGetTickCount();
CvSeq* objects = cvHaarDetectObjects(small_img,
cascade,
storage,
1.1,
,
/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(,)); t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*.) ); //Loop through found objects and draw boxes around them
for(int i=;i<(objects? objects->total:);++i)
{
CvRect* r=(CvRect*)cvGetSeqElem(objects,i);
cvRectangle(img, cvPoint(r->x*scale,r->y*scale), cvPoint((r->x+r->width)*scale,(r->y+r->height)*scale), colors[i%]);
}
for( int i = ; i < (objects? objects->total : ); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( objects, i );
CvPoint center;
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, colors[i%], , , );
} cvShowImage( "result", img );
cvReleaseImage(&gray);
cvReleaseImage(&small_img);
}

detect_and_draw

===================================

其实上面的代码可以运用于大部分模式识别问题,无论是自己生成的xml文件还是opencv自带的xml文件。在opencv的工程目录opencv\data文件夹下有大量的xml文件,这些都是opencv开源项目中的程序员们自己训练出来的。然而,效果一般不会合你预期,所以才有了本系列文章。天下没有免费的午餐,想要获得更高的查准率与查全率,不付出点努力是不行的!

 

【原】训练自己的haar-like特征分类器并识别物体(3)的更多相关文章

  1. 【原】训练自己haar-like特征分类器并识别物体(2)

    在上一篇文章中,我介绍了<训练自己的haar-like特征分类器并识别物体>的前两个步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 == ...

  2. 【原】训练自己haar-like特征分类器并识别物体(1)

    本系列文章旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别.该过程大致可以分为一下几个大步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本 ...

  3. 使用OpenCV训练Haar like+Adaboost分类器的常见问题

    <FAQ:OpenCV Haartraining>——使用OpenCV训练Haar like+Adaboost分类器的常见问题 最近使用OpenCV训练Haar like+Adaboost ...

  4. AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图

    原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...

  5. 【macOS】 在OpenCV下训练Haar特征分类器

    本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...

  6. opencv - haar人脸特征的训练

    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...

  7. opencv:级联分类器训练(cascade classifier training)(两个分类器的区别)

    # 介绍 级联分类器包括两个工作阶段:训练(traning),检测(detection).检测阶段在文档<objdetect module of general OpenCV documenta ...

  8. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如何使用尽可能少的标注数据来训练一个效果有潜力的分类器

    作者:AI研习社链接:https://www.zhihu.com/question/57523080/answer/236301363来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  9. sklearn 可视化模型的训练测试收敛情况和特征重要性

    show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...

随机推荐

  1. js转html实体

    方法一: 用的浏览器内部转换器实现转换,方法是动态创建一个容器标签元素,如DIV,将要转换的字符串设置为这个元素的innerText,然后返回这个元素的innerHTML,即得到经过HTML编码转换的 ...

  2. 【翻译】C# Tips & Tricks: Weak References - When and How to Use Them

    原文:C# Tips & Tricks: Weak References - When and How to Use Them Sometimes you have an object whi ...

  3. win7中的画图

    下午做一个图像篡改定位实验,在win7下对图像进行修改,然后通过其最低位判断篡改位置. 程序如何都调试不出来.反复简化程序,发现win7中的画图对图像存在优化. 当更改图像后,会自动调整当前图像的显示 ...

  4. 使用Service.Stack客户端编写redis pub sub的方法

    pub相对简单 client.PublishMessage("channel", "msg");   sub有2种方法 方法1 var subscription ...

  5. vim编辑器的基本使用

        VIM的操作模式     Command Mode 命令模式     Insert Mode 输入模式     Last Line Mode 底行模式       vim abc 如果文件存在 ...

  6. [编辑器]走上atom之路1

    祝大家新年快乐 我就是来卖个萌,逃- 正文 我最开始用atom是因为它看起来比较酷,我工作中主力还是使用pycharm,毕竟atom只是一个编辑器.我一 般只是用atom来写Markdown的文件.随 ...

  7. Mysql学习笔记(七)查(补充)

    PS:五一还是要学习...虽然有点苦逼..但是路是自己选的,那么自己就要坚持的走下去... 学习内容: 1.数据库查找的补充... 查找涉及的东西比较多,在上一个章节没有完全介绍...我们还是以pet ...

  8. SQL Server里PIVOT运算符的”红颜祸水“

    在今天的文章里我想讨论下SQL Server里一个特别的T-SQL语言结构——自SQL Server 2005引入的PIVOT运算符.我经常引用这个与语言结构是SQL Server里最危险的一个——很 ...

  9. sprint3(第三天)

    今天在做的任务是整合前台和后台,使前台可以从后台得到数据 燃尽图:

  10. C#开发ActiveX网页截图控件

    故事背景:Java组的小伙伴需要一个能在IE(还是6...)下截图并返回给网页的功能,但是IE做起来很麻烦(可能根本做不到),于是找到我写一个ActiveX控件实现此功能,想着可能还有其他小伙伴需要这 ...