HDU-1698 JUST A HOOK 线段树
最近刚学线段树,做了些经典题目来练手
Just a Hook
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 24370 Accepted Submission(s): 12156
Problem Description
In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.
Now Pudge wants to do some operations on the hook.
Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.
The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:
For each cupreous stick, the value is 1.
For each silver stick, the value is 2.
For each golden stick, the value is 3.
Pudge wants to know the total value of the hook after performing the operations.
You may consider the original hook is made up of cupreous sticks.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.
Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden kind.
Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.
Sample Input
1
10
2
1 5 2
5 9 3
Sample Output
Case 1: The total value of the hook is 24.
题目大意:Dota中的屠夫,有一个钩子,钩子分为n段,现在给出m个指令,将【X,Y】段钩子变成Z种(Z分为三种:1为铜钩,2为银钩,3为金钩)初始钩子都为Cu,m次操作后,求整个钩的价值
每组样例有t组数据
(N<=100000,1<=X<=Y<=N,1<=Z<=3)
维护一棵线段树,区间修改,最后求一下全区间的和,唯一可以说的就是惰性标记是直接改变,并非不断累积
因为所求是全区间的和,所以没必要再额外写一个区间求和的函数,直接在修改时下放标记,最后输出这颗线段树的根即可
代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define maxlen 100001
int value[maxlen<<2]={0},delta[maxlen<<2]={0};
int dota[maxlen]={0};
void updata(int now)
{
value[now]=value[now<<1]+value[now<<1|1];
}
void build(int l,int r,int now)
{
if (l==r)
{
value[now]=dota[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,now<<1);
build(mid+1,r,now<<1|1);
updata(now);
}
void pushdown(int now,int ln,int rn)
{
if (delta[now]!=0)
{
delta[now<<1]=delta[now];
delta[now<<1|1]=delta[now];
value[now<<1]=delta[now]*ln;
value[now<<1|1]=delta[now]*rn;
delta[now]=0;
}
}
void section_change(int L,int R,int l,int r,int now,int data)
{
if (L<=l && R>=r)
{
value[now]=data*(r-l+1);
delta[now]=data;
return;
}
int mid=(l+r)>>1;
pushdown(now,mid-l+1,r-mid);
if (L<=mid)
section_change(L,R,l,mid,now<<1,data);
if (R>mid)
section_change(L,R,mid+1,r,now<<1|1,data);
updata(now);
}
int main()
{
int t;
int n;
int m;
int time=1;
scanf("%d",&t);
while (true)
{
if (t==0) break;
scanf("%d",&n);
for (int i=1; i<=n; i++)
dota[i]=1;
memset(delta,0,sizeof(delta));
memset(value,0,sizeof(value));
build(1,n,1);
scanf("%d",&m);
for (int i=1; i<=m; i++)
{
int start,end,data;
scanf("%d%d%d",&start,&end,&data);
section_change(start,end,1,n,1,data);
}
printf("Case %d: The total value of the hook is %d.\n",time,value[1]);
time++;
t--;
}
return 0;
}
HDU-1698 JUST A HOOK 线段树的更多相关文章
- HDU 1698 just a hook 线段树,区间定值,求和
Just a Hook Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1 ...
- HDU 1698 Just a Hook(线段树 区间替换)
Just a Hook [题目链接]Just a Hook [题目类型]线段树 区间替换 &题解: 线段树 区间替换 和区间求和 模板题 只不过不需要查询 题里只问了全部区间的和,所以seg[ ...
- HDU 1698 Just a Hook(线段树成段更新)
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 1698 Just a Hook (线段树 成段更新 lazy-tag思想)
题目链接 题意: n个挂钩,q次询问,每个挂钩可能的值为1 2 3, 初始值为1,每次询问 把从x到Y区间内的值改变为z.求最后的总的值. 分析:用val记录这一个区间的值,val == -1表示这 ...
- [HDU] 1698 Just a Hook [线段树区间替换]
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- (简单) HDU 1698 Just a Hook , 线段树+区间更新。
Description: In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of ...
- HDU 1698 Just a Hook 线段树+lazy-target 区间刷新
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 1698 Just a Hook(线段树区间更新查询)
描述 In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes ...
- HDU 1698 Just a Hook(线段树区间替换)
题目地址:pid=1698">HDU 1698 区间替换裸题.相同利用lazy延迟标记数组,这里仅仅是当lazy下放的时候把以下的lazy也所有改成lazy就好了. 代码例如以下: # ...
- HDU 1698 Just a Hook 线段树区间更新、
来谈谈自己对延迟标记(lazy标记)的理解吧. lazy标记的主要作用是尽可能的降低时间复杂度. 这样说吧. 如果你不用lazy标记,那么你对于一个区间更新的话是要对其所有的子区间都更新一次,但如果用 ...
随机推荐
- Flash剪贴板功能
做JS的都知道,如果不考虑浏览器的兼容问题,其实,JS本身的window.clipboardData对象是可以做到复制内容到剪贴板的功能,但除了IE浏览器,FF和Chrome浏览器都不支持.现在为了浏 ...
- php安全配置记录
Php环境部署完成后,通常我们会进行一些安全设置.除了熟悉各种PHP漏洞外,还可以通过配置php.ini来加固PHP的运行环境.PHP官方也曾经多次修改php.ini的默认设置. 接下来,推荐php. ...
- KVM虚拟机网络基础及优化说明
一个完整的数据包从虚拟机到物理机的路径是: 虚拟机--QEMU虚拟网卡--虚拟化层--内核网桥--物理网卡 KVM的网络优化方案,总的来说,就是让虚拟机访问物理网卡的层数更少,直至对物理网卡的单独占领 ...
- Spring 4 bak
IOC (参考<Spring企业开发>.<Spring实战 第三版 第四版>) IoC概述 1. 控制反转 2.依赖注入 控制反转:大多数情况下,想要 ...
- Css 常用属性
1. overflow:hidden和zoom:1 verflow:hidden;的作用 1. 隐藏溢出 :2.消除浮动 <style type="text/css"> ...
- MySQL基础 - 外键和约束
在工作中经常会遇到不少不同的观点,比如对于数据库来说那就是是否要设置外键,设置外键的理由自然不必多说,而不设置外键的理由多半为设置外键影响性能,但就目前工作来讲,还没有涉及到因为外键而引发的数据库瓶颈 ...
- Spring MVC实现文件下载
下载文件① 下载文件需要将byte数组还原成文件. 首先使用mybatis将数据库中的byte数组查出来,指定文件名(包括格式).然后使用OutputStream将文件输入 @RequestMapp ...
- ccpc-1008-HDU5839Special Tetrahedron-计算几何
计算几何水题.暴力搞 注意力全部都在02那里,完全没想这道题! /*------------------------------------------------------------------ ...
- UITableView和UICollectionView的Cell高度的几种设置方式
UITableViewCell 1.UITableView的Cell高度默认由rowHeight属性指定一个低优先级的隐式约束 2.XIB中可向UITableViewCell的contentView添 ...
- PCA和LDA降维的比较
PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as ...