Cards

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 470    Accepted Submission(s): 72

Problem Description
Given some cards each assigned a number, you're required to select EXACTLY K cards among them.
While you select a card, I will check the number assigned to it and see if it satisfies some of the following conditions:
1. the number is a prime number;
2. the amount of its divisors is a prime number;
3. the sum of its divisors is a prime number;
4. the product of all its divisors is a perfect square number. A perfect square number is such a kind of number that it can be written as a square of an integer.
The score you get from this card is equal to the amount of conditions that its number satisfies. The total score you get from the selection of K cards is equal to the sum of scores of each card you select.
After you have selected K cards, I will check if there's any condition that has never been satisfied by any card you select. If there is, I will add some extra scores to you for each unsatisfied condition. To make the game more interesting, this score may be negative.
After this, you will get your final score. Your task is to figure out the score of each card and find some way to maximize your final score.
Note that 1 is not a prime number. In this problem, we consider a number to be a divisor of itself. For example, considering the number 16, it is not a prime. All its divisors are respectively 1, 2, 4, 8 and 16, and thus, it has 5 divisors with a sum of 31 and a product of 1024. Therefore, it satisfies the condition 2, 3 and 4, which deserves 3 points.
 
Input
The first line of the input contains the number of test cases T.
Each test case begins with two integers N and K, indicating there are N kinds of cards, and you're required to select K cards among them.
The next N lines describes all the cards. Each of the N lines consists of two integers A and B, which denote that the number written on this kind of card is A, and you can select at most B cards of this kind.
The last line contains 4 integers, where the ith integer indicates the extra score that will be added to the result if the ith condition is not satisfied. The ABSOLUTE value of these four integers will not exceed 40000.
You may assume 0<N≤103,0<K≤104,1≤A≤106,1≤B≤104,T≤40 and the total N of all cases is no more than 20000. In each case there are always enough cards that you're able to select exact K cards among them.
 
Output
Output two lines for each test case.
The first line consists of N integers separated by blanks, where the ith integer is the score of the ith card.
The second line contains a single integer, the maximum final scores you can get.
 
Sample Input
1
5 3
1 1
2 1
3 1
4 1
5 1
1 2 3 4
 
Sample Output
1 3 2 2 2
11
 
Source
 
Recommend
liuyiding

题目意思很长。

需要解决,判断一个数是不是素数,一个数约数的个数是不是素数,一个数约数的和是不是素数,一个数约数的乘积是不是素数。

一个数是不是素数直接判断的。

约数个数是素数的话,肯定这个数只能有一个素因子,判断这个素因子的指数+1是不是素数就可以了。

约数的和为素数,也必须只含一个素因子p^k.然后求1+p^1+p^2+..+p^k .判断是不是素数。

比较麻烦的是约数的乘积是不是素数的判断。

其实就是每一个素因子的指数为偶数。

之后我是枚举的。貌似正确的枚举方法是把所有点分成16种,2^16枚举的。

我做的时候是枚举2^4,就是判断每一种能不能取,然后从大到小选择。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const int MAXN = ;
//素数筛选部分
bool notprime[MAXN];//值为false表示素数,值为true表示非素数
int prime[MAXN+];
void getPrime()
{
memset(notprime,false,sizeof(notprime));
notprime[]=notprime[]=true;
memset(prime,,sizeof(prime));
for(int i=;i<=MAXN;i++)
{
if(!notprime[i])prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
notprime[prime[j]*i]=true;
if(i%prime[j]==) break;
}
}
}
//合数分解
long long factor[][];
int fatCnt;
int getFactors(long long x)
{
fatCnt=;
long long tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatCnt][]=;
if(tmp%prime[i]==)
{
factor[fatCnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatCnt][]++;
tmp/=prime[i];
}
fatCnt++;
}
}
if(tmp!=)
{
factor[fatCnt][]=tmp;
factor[fatCnt++][]=;
}
return fatCnt;
}
struct Node
{
int A,B;
int score;
int s;
}node[];
bool cmp(Node a,Node b)
{
return a.score > b.score;
}
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a;
while(n)
{
if(n&)ret*=tmp;
tmp*=tmp;
n>>=;
}
return ret;
}
long long sum(long long p,long long n)//求1+p+p^2+p^3+..p^n
{
if(p==)return ;
if(n == )return ;
if(n&)
return (+pow_m(p,n/+))*sum(p,n/);
else return (+pow_m(p,n/+))*sum(p,n/-)+pow_m(p,n/);
}
void check(int index)
{
if(node[index].A == )
{
node[index].score = ;
node[index].s = (<<);
return;
}
getFactors(node[index].A);
node[index].s = ;
//第一个条件(是素数)
if(fatCnt == && factor[][] == )
node[index].s |= (<<);
//第二个条件
if(fatCnt == && notprime[factor[][]+]==false)
node[index].s |= (<<);
//第三个条件
if(fatCnt == && notprime[sum(factor[][],factor[][])]==false)
node[index].s |= (<<);
//第四个条件
bool flag = true;
for(int i = ;i < fatCnt;i++)
{
long long tmp = (factor[i][]+)*factor[i][]/;
for(int j = ;j < fatCnt;j++)
if(i != j)
tmp *= (factor[j][]+);
if(tmp%!=)
{
flag = false;
break;
}
}
if(flag)node[index].s |= (<<);
node[index].score = ;
for(int i = ;i < ;i++)
if(node[index].s &(<<i))
node[index].score++;
} int b[];
int main()
{
//freopen("1011.in","r",stdin);
//freopen("out.txt","w",stdout);
getPrime();
int T;
int N,K;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&K);
for(int i = ;i < N;i++)
{
scanf("%d%d",&node[i].A,&node[i].B);
check(i);
}
for(int i = ;i < N;i++)
{
printf("%d",node[i].score);
if(i < N-)printf(" ");
else printf("\n");
}
for(int i = ;i < ;i++)
scanf("%d",&b[i]);
int ans = -;
sort(node,node+N,cmp);
for(int k = ;k <(<<);k++)
{
int tmp = ;
int temps = ;
int cc = K;
for(int i = ;i < N;i++)
if((node[i].s & k)==)
{
if(cc == )break;
temps |= node[i].s;
tmp += node[i].score*min(cc,node[i].B);
cc -= min(cc,node[i].B);
if(cc == )break;
}
for(int i = ;i < ;i++)
if((temps&(<<i))==)
tmp += b[i];
if(cc!=)continue;
else ans = max(ans,tmp);
}
printf("%d\n",ans);
}
return ;
}

HDU 4610 Cards (合数分解,枚举)的更多相关文章

  1. hdu 4610 Cards

    http://acm.hdu.edu.cn/showproblem.php?pid=4610 先求出每个数的得分情况,分数和得分状态,(1<<4)种状态 按分数从大到小排序 然后每种状态取 ...

  2. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. hdu_4497GCD and LCM(合数分解)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...

  6. Perfect Pth Powers pku-1730(筛+合数分解)

    题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26,  然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...

  7. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  8. GCD and LCM HDU - 4497(质因数分解)

    Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, ...

  9. hdu 5428 The Factor 分解质因数

    The Factor  Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...

随机推荐

  1. 单点登录系统构建之一——基础知识(Kerberous/SAML)

    http://web.mit.edu/kerberos/ Kerberos Kerberous是一个网络身份验证协议,它被设计为客户端/服务器提供基于密钥的强加密机制.该协议最初由MIT实现并被广泛商 ...

  2. Qt之设置QWidget背景色

    简述 QWidget是所有用户界面对象的基类,这意味着可以用同样的方法为其它子类控件改变背景颜色. Qt中窗口背景的设置,下面介绍三种方法. 使用QPalette 使用Style Sheet 绘图事件 ...

  3. POJ 2828 (线段树 单点更新) Buy Tickets

    倒着插,倒着插,这道题是倒着插! 想一下如果 Posi 里面有若干个0,那么排在最前面的一定是最后一个0. 从后往前看,对于第i个数,就应该插在第Posi + 1个空位上,所以用线段树来维护区间空位的 ...

  4. POJ 1988 Cube Stacking

    题意:有编号为1~N的N个小木块,有两种操作 M x y 将木块x所在的堆放到木块y所在的堆的上面 C x 询问木块x下面有多少块木块 代码巧妙就巧妙在GetParent函数中在进行路径压缩的同时,也 ...

  5. 用AngularJS开发的过程中如何查看Scope内容

    scope的继承就好比JS的原型链继承,深入理解Scope:http://www.lovelucy.info/understanding-scopes-in-angularjs.html 通过查看官网 ...

  6. UPDATE语句中使用JOIN

    举个例子~ UPDATE e SET e.money = e.money + d.amount FROM employee e INNER JOIN ( GROUP BY empid) d ON d. ...

  7. 【appium】关于logcat

    SDK的文档要看 http://developer.android.com/tools/help/logcat.html http://developer.android.com/tools/debu ...

  8. Javaweb里面的filter,listener,servlet

    Filter 1Filter是什么:是过滤器简称 2Filter有什么作用:在filter中可以得到代表用户请求和响应的request.response对象,因此在编程中可以使用Decorator(装 ...

  9. 查询mysql数据库表的信息(表大小、数据大小、索引大小)

    select * from information_schema.TABLES where information_schema.TABLES.TABLE_SCHEMA='databasename' ...

  10. pg psql命令

    linux下使用psql命令操作数据库 下面主要用到了insert into  ,pg_dump  , pg_restore 命令 按步骤走 su postgres                   ...