Cards

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 470    Accepted Submission(s): 72

Problem Description
Given some cards each assigned a number, you're required to select EXACTLY K cards among them.
While you select a card, I will check the number assigned to it and see if it satisfies some of the following conditions:
1. the number is a prime number;
2. the amount of its divisors is a prime number;
3. the sum of its divisors is a prime number;
4. the product of all its divisors is a perfect square number. A perfect square number is such a kind of number that it can be written as a square of an integer.
The score you get from this card is equal to the amount of conditions that its number satisfies. The total score you get from the selection of K cards is equal to the sum of scores of each card you select.
After you have selected K cards, I will check if there's any condition that has never been satisfied by any card you select. If there is, I will add some extra scores to you for each unsatisfied condition. To make the game more interesting, this score may be negative.
After this, you will get your final score. Your task is to figure out the score of each card and find some way to maximize your final score.
Note that 1 is not a prime number. In this problem, we consider a number to be a divisor of itself. For example, considering the number 16, it is not a prime. All its divisors are respectively 1, 2, 4, 8 and 16, and thus, it has 5 divisors with a sum of 31 and a product of 1024. Therefore, it satisfies the condition 2, 3 and 4, which deserves 3 points.
 
Input
The first line of the input contains the number of test cases T.
Each test case begins with two integers N and K, indicating there are N kinds of cards, and you're required to select K cards among them.
The next N lines describes all the cards. Each of the N lines consists of two integers A and B, which denote that the number written on this kind of card is A, and you can select at most B cards of this kind.
The last line contains 4 integers, where the ith integer indicates the extra score that will be added to the result if the ith condition is not satisfied. The ABSOLUTE value of these four integers will not exceed 40000.
You may assume 0<N≤103,0<K≤104,1≤A≤106,1≤B≤104,T≤40 and the total N of all cases is no more than 20000. In each case there are always enough cards that you're able to select exact K cards among them.
 
Output
Output two lines for each test case.
The first line consists of N integers separated by blanks, where the ith integer is the score of the ith card.
The second line contains a single integer, the maximum final scores you can get.
 
Sample Input
1
5 3
1 1
2 1
3 1
4 1
5 1
1 2 3 4
 
Sample Output
1 3 2 2 2
11
 
Source
 
Recommend
liuyiding

题目意思很长。

需要解决,判断一个数是不是素数,一个数约数的个数是不是素数,一个数约数的和是不是素数,一个数约数的乘积是不是素数。

一个数是不是素数直接判断的。

约数个数是素数的话,肯定这个数只能有一个素因子,判断这个素因子的指数+1是不是素数就可以了。

约数的和为素数,也必须只含一个素因子p^k.然后求1+p^1+p^2+..+p^k .判断是不是素数。

比较麻烦的是约数的乘积是不是素数的判断。

其实就是每一个素因子的指数为偶数。

之后我是枚举的。貌似正确的枚举方法是把所有点分成16种,2^16枚举的。

我做的时候是枚举2^4,就是判断每一种能不能取,然后从大到小选择。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const int MAXN = ;
//素数筛选部分
bool notprime[MAXN];//值为false表示素数,值为true表示非素数
int prime[MAXN+];
void getPrime()
{
memset(notprime,false,sizeof(notprime));
notprime[]=notprime[]=true;
memset(prime,,sizeof(prime));
for(int i=;i<=MAXN;i++)
{
if(!notprime[i])prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
notprime[prime[j]*i]=true;
if(i%prime[j]==) break;
}
}
}
//合数分解
long long factor[][];
int fatCnt;
int getFactors(long long x)
{
fatCnt=;
long long tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatCnt][]=;
if(tmp%prime[i]==)
{
factor[fatCnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatCnt][]++;
tmp/=prime[i];
}
fatCnt++;
}
}
if(tmp!=)
{
factor[fatCnt][]=tmp;
factor[fatCnt++][]=;
}
return fatCnt;
}
struct Node
{
int A,B;
int score;
int s;
}node[];
bool cmp(Node a,Node b)
{
return a.score > b.score;
}
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a;
while(n)
{
if(n&)ret*=tmp;
tmp*=tmp;
n>>=;
}
return ret;
}
long long sum(long long p,long long n)//求1+p+p^2+p^3+..p^n
{
if(p==)return ;
if(n == )return ;
if(n&)
return (+pow_m(p,n/+))*sum(p,n/);
else return (+pow_m(p,n/+))*sum(p,n/-)+pow_m(p,n/);
}
void check(int index)
{
if(node[index].A == )
{
node[index].score = ;
node[index].s = (<<);
return;
}
getFactors(node[index].A);
node[index].s = ;
//第一个条件(是素数)
if(fatCnt == && factor[][] == )
node[index].s |= (<<);
//第二个条件
if(fatCnt == && notprime[factor[][]+]==false)
node[index].s |= (<<);
//第三个条件
if(fatCnt == && notprime[sum(factor[][],factor[][])]==false)
node[index].s |= (<<);
//第四个条件
bool flag = true;
for(int i = ;i < fatCnt;i++)
{
long long tmp = (factor[i][]+)*factor[i][]/;
for(int j = ;j < fatCnt;j++)
if(i != j)
tmp *= (factor[j][]+);
if(tmp%!=)
{
flag = false;
break;
}
}
if(flag)node[index].s |= (<<);
node[index].score = ;
for(int i = ;i < ;i++)
if(node[index].s &(<<i))
node[index].score++;
} int b[];
int main()
{
//freopen("1011.in","r",stdin);
//freopen("out.txt","w",stdout);
getPrime();
int T;
int N,K;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&K);
for(int i = ;i < N;i++)
{
scanf("%d%d",&node[i].A,&node[i].B);
check(i);
}
for(int i = ;i < N;i++)
{
printf("%d",node[i].score);
if(i < N-)printf(" ");
else printf("\n");
}
for(int i = ;i < ;i++)
scanf("%d",&b[i]);
int ans = -;
sort(node,node+N,cmp);
for(int k = ;k <(<<);k++)
{
int tmp = ;
int temps = ;
int cc = K;
for(int i = ;i < N;i++)
if((node[i].s & k)==)
{
if(cc == )break;
temps |= node[i].s;
tmp += node[i].score*min(cc,node[i].B);
cc -= min(cc,node[i].B);
if(cc == )break;
}
for(int i = ;i < ;i++)
if((temps&(<<i))==)
tmp += b[i];
if(cc!=)continue;
else ans = max(ans,tmp);
}
printf("%d\n",ans);
}
return ;
}

HDU 4610 Cards (合数分解,枚举)的更多相关文章

  1. hdu 4610 Cards

    http://acm.hdu.edu.cn/showproblem.php?pid=4610 先求出每个数的得分情况,分数和得分状态,(1<<4)种状态 按分数从大到小排序 然后每种状态取 ...

  2. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. hdu_4497GCD and LCM(合数分解)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...

  6. Perfect Pth Powers pku-1730(筛+合数分解)

    题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26,  然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...

  7. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  8. GCD and LCM HDU - 4497(质因数分解)

    Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, ...

  9. hdu 5428 The Factor 分解质因数

    The Factor  Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...

随机推荐

  1. UVa 12100 (模拟) Printer Queue

    用一个队列模拟,还有一个数组cnt记录9个优先级的任务的数量,每次找到当前最大优先级的任务然后出队,并及时更新cnt数组. #include <iostream> #include < ...

  2. C++实现顺序表

    #include<iostream>using namespace std; typedef int DataType; class SeqList{public:    SeqList( ...

  3. 事件对象event和计时器

    事件对象:event 属性: srcElement事件源对象 keyCode 键盘按键Ascii码 window方法: 定时器: 1)setTimeout();//n毫秒后执行一次 2)setInte ...

  4. ecshop显示所有分类树栏目

    1.找到 category.php 和goods.php 两个文件修改: $smarty->assign('categories', get_categories_tree(0)); // 分类 ...

  5. 五:分布式事务一致性协议paxos的应用场景

    1.应用场景 (1)分布式中的一致性 Paxos算法主要是解决一致性问题,关于“一致性”,在不同的场景有不同的解释: NoSQL领域:一致性更强调“能读到新写入的”,就是读写一致性数据库领域:一致性强 ...

  6. Oracle RAC OCR 与健忘症

    OCR就好比Windows的一个注册表,存储了所有与集群,RAC数据库相关的配置信息.而且是公用的配置,也就是说多个节点共享相同的配置信息.因此该配置应当存储于共享磁盘.本文主要基于Oracle 10 ...

  7. PHP include()和require()方法的区别

    本文总结了PHP的include()和require()两种包含外部文件的方法的不同之处.基本上就是,加载失败的处理方法,性能,以及使用弹性方面的不同. PHP的include()和require() ...

  8. linux 开机自动运行

    1.开机启动时自动运行程序 Linux加载后, 它将初始化硬件和设备驱动, 然后运行第一个进程init.init根据配置文件继续引导过程,启动其它进程.通常情况下,修改放置在 /etc/rc或 /et ...

  9. Mysql数据库优化总结2

    说明:本文的环境为CENTOS 5.5 64 Bit /Mysql 5.1.50 简介:使用Mysql有一段时间了,期间做了不少关于Mysql优化.设计.维护的工作,这两天有时间做一下简单的总结,方便 ...

  10. linux 下按在sqllite

    1 安装 去sqlite主页http://www.sqlite.org/.跳转到下载也http://www.sqlite.org/download.html.源码下载sqlite-amalgamati ...