HDU 4610 Cards (合数分解,枚举)
Cards
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 470 Accepted Submission(s): 72
While you select a card, I will check the number assigned to it and see if it satisfies some of the following conditions:
1. the number is a prime number;
2. the amount of its divisors is a prime number;
3. the sum of its divisors is a prime number;
4. the product of all its divisors is a perfect square number. A perfect square number is such a kind of number that it can be written as a square of an integer.
The score you get from this card is equal to the amount of conditions that its number satisfies. The total score you get from the selection of K cards is equal to the sum of scores of each card you select.
After you have selected K cards, I will check if there's any condition that has never been satisfied by any card you select. If there is, I will add some extra scores to you for each unsatisfied condition. To make the game more interesting, this score may be negative.
After this, you will get your final score. Your task is to figure out the score of each card and find some way to maximize your final score.
Note that 1 is not a prime number. In this problem, we consider a number to be a divisor of itself. For example, considering the number 16, it is not a prime. All its divisors are respectively 1, 2, 4, 8 and 16, and thus, it has 5 divisors with a sum of 31 and a product of 1024. Therefore, it satisfies the condition 2, 3 and 4, which deserves 3 points.
Each test case begins with two integers N and K, indicating there are N kinds of cards, and you're required to select K cards among them.
The next N lines describes all the cards. Each of the N lines consists of two integers A and B, which denote that the number written on this kind of card is A, and you can select at most B cards of this kind.
The last line contains 4 integers, where the ith integer indicates the extra score that will be added to the result if the ith condition is not satisfied. The ABSOLUTE value of these four integers will not exceed 40000.
You may assume 0<N≤103,0<K≤104,1≤A≤106,1≤B≤104,T≤40 and the total N of all cases is no more than 20000. In each case there are always enough cards that you're able to select exact K cards among them.
The first line consists of N integers separated by blanks, where the ith integer is the score of the ith card.
The second line contains a single integer, the maximum final scores you can get.
5 3
1 1
2 1
3 1
4 1
5 1
1 2 3 4
11
题目意思很长。
需要解决,判断一个数是不是素数,一个数约数的个数是不是素数,一个数约数的和是不是素数,一个数约数的乘积是不是素数。
一个数是不是素数直接判断的。
约数个数是素数的话,肯定这个数只能有一个素因子,判断这个素因子的指数+1是不是素数就可以了。
约数的和为素数,也必须只含一个素因子p^k.然后求1+p^1+p^2+..+p^k .判断是不是素数。
比较麻烦的是约数的乘积是不是素数的判断。
其实就是每一个素因子的指数为偶数。
之后我是枚举的。貌似正确的枚举方法是把所有点分成16种,2^16枚举的。
我做的时候是枚举2^4,就是判断每一种能不能取,然后从大到小选择。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const int MAXN = ;
//素数筛选部分
bool notprime[MAXN];//值为false表示素数,值为true表示非素数
int prime[MAXN+];
void getPrime()
{
memset(notprime,false,sizeof(notprime));
notprime[]=notprime[]=true;
memset(prime,,sizeof(prime));
for(int i=;i<=MAXN;i++)
{
if(!notprime[i])prime[++prime[]]=i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
notprime[prime[j]*i]=true;
if(i%prime[j]==) break;
}
}
}
//合数分解
long long factor[][];
int fatCnt;
int getFactors(long long x)
{
fatCnt=;
long long tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatCnt][]=;
if(tmp%prime[i]==)
{
factor[fatCnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatCnt][]++;
tmp/=prime[i];
}
fatCnt++;
}
}
if(tmp!=)
{
factor[fatCnt][]=tmp;
factor[fatCnt++][]=;
}
return fatCnt;
}
struct Node
{
int A,B;
int score;
int s;
}node[];
bool cmp(Node a,Node b)
{
return a.score > b.score;
}
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a;
while(n)
{
if(n&)ret*=tmp;
tmp*=tmp;
n>>=;
}
return ret;
}
long long sum(long long p,long long n)//求1+p+p^2+p^3+..p^n
{
if(p==)return ;
if(n == )return ;
if(n&)
return (+pow_m(p,n/+))*sum(p,n/);
else return (+pow_m(p,n/+))*sum(p,n/-)+pow_m(p,n/);
}
void check(int index)
{
if(node[index].A == )
{
node[index].score = ;
node[index].s = (<<);
return;
}
getFactors(node[index].A);
node[index].s = ;
//第一个条件(是素数)
if(fatCnt == && factor[][] == )
node[index].s |= (<<);
//第二个条件
if(fatCnt == && notprime[factor[][]+]==false)
node[index].s |= (<<);
//第三个条件
if(fatCnt == && notprime[sum(factor[][],factor[][])]==false)
node[index].s |= (<<);
//第四个条件
bool flag = true;
for(int i = ;i < fatCnt;i++)
{
long long tmp = (factor[i][]+)*factor[i][]/;
for(int j = ;j < fatCnt;j++)
if(i != j)
tmp *= (factor[j][]+);
if(tmp%!=)
{
flag = false;
break;
}
}
if(flag)node[index].s |= (<<);
node[index].score = ;
for(int i = ;i < ;i++)
if(node[index].s &(<<i))
node[index].score++;
} int b[];
int main()
{
//freopen("1011.in","r",stdin);
//freopen("out.txt","w",stdout);
getPrime();
int T;
int N,K;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&K);
for(int i = ;i < N;i++)
{
scanf("%d%d",&node[i].A,&node[i].B);
check(i);
}
for(int i = ;i < N;i++)
{
printf("%d",node[i].score);
if(i < N-)printf(" ");
else printf("\n");
}
for(int i = ;i < ;i++)
scanf("%d",&b[i]);
int ans = -;
sort(node,node+N,cmp);
for(int k = ;k <(<<);k++)
{
int tmp = ;
int temps = ;
int cc = K;
for(int i = ;i < N;i++)
if((node[i].s & k)==)
{
if(cc == )break;
temps |= node[i].s;
tmp += node[i].score*min(cc,node[i].B);
cc -= min(cc,node[i].B);
if(cc == )break;
}
for(int i = ;i < ;i++)
if((temps&(<<i))==)
tmp += b[i];
if(cc!=)continue;
else ans = max(ans,tmp);
}
printf("%d\n",ans);
}
return ;
}
HDU 4610 Cards (合数分解,枚举)的更多相关文章
- hdu 4610 Cards
http://acm.hdu.edu.cn/showproblem.php?pid=4610 先求出每个数的得分情况,分数和得分状态,(1<<4)种状态 按分数从大到小排序 然后每种状态取 ...
- hdu 5317 合数分解+预处理
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 4497 GCD and LCM (合数分解)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu_4497GCD and LCM(合数分解)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...
- Perfect Pth Powers pku-1730(筛+合数分解)
题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26, 然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...
- pku1365 Prime Land (数论,合数分解模板)
题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...
- GCD and LCM HDU - 4497(质因数分解)
Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, ...
- hdu 5428 The Factor 分解质因数
The Factor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...
随机推荐
- POJ 1976 A Mini Locomotive【DP】
题意:给出一列火车,可以由三个火车头拉,每个火车头最多拉m节车厢(这m节车厢需要保持连续),再给出n节车厢,每节车厢的人数,问最多能够载多少人到终点. 可以转化为三个长度相等的区间去覆盖n个数,使得这 ...
- Odoo 的库存管理与OpenERP之前的版本有了很大的不同,解读Odoo新的WMS模块中的新特性
原文来自:http://shine-it.net/index.php/topic,16409.0.html 库存移动(Stock Move)新玩法Odoo的库存移动不仅仅是存货在两个“存货地点”之间的 ...
- maven打包无法打包mybatis及系统配置文件问题
<resources> <!-- mybatis映射文件 --> <resource> <directory>src/main/java/com/bsh ...
- BZOJ 4636 蒟蒻的数列
二分写错了血T..... 线段树标记永久化. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- Localizing Astah – Chinese version(simplified) is now available!
Thanks to Abbey, now GUI in Astah Community can be shown in Chinese. As Abbey created Chinese one, a ...
- acdream 1686 梦醒(时钟重合)
Problem Description 娜娜离开了这个王国,走向远方,在旷野上,娜娜看到了一个大时钟,上面的时针分针秒针都在缓缓转动,那只挥着翅膀的天使又出现了,天使说:“外面天已经亮了,娜娜你别睡过 ...
- android4.0以上部分手机绘图时会出现重影
canvas外层的div需要设定属性style="overflow:visible;-webkit-transform: translateZ(0);
- c# is和as的区别
关于类型的判断和转换有is和as这2个操作符.具体区别和用法如下is就是处于对类型的判断.返回true和false.如果一个对象是某个类型或是其父类型的话就返回为true,否则的话就会返回为false ...
- 关于div居中
margin : 100px; margin-left: auto; margin-right: auto; 这样子设置css样式就可以实现一个div居中
- zend+xdebug单步调试
也允许使用第三方调试工具,今天以PHP教程形式分享如何使用zend studio配置Xdebug来调试PHP程序. 使用Xdebug在zend studio中调试PHP源码之前,请务必安装配置Xdeb ...