题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007

  简单裸题,测测模板,G++速度快了不少,应该是编译的时候对比C++优化了不少。。

 //STATUS:G++_AC_1703MS_5004KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End
struct Node{ //id为nod排序后的编号值,index为排序前的标号值(随便自己定义)
double x,y;
int id,index;
Node(){}
Node(double _x,double _y,int _index):x(_x),y(_y),index(_index){}
}nod[N],temp[N]; int n; double dist(Node &a,Node &b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool cmpxy(Node a,Node b) //先按x排序,然后按y排序
{
return a.x!=b.x?a.x<b.x:a.y<b.y;
} bool cmpy(Node a,Node b) //按y排序
{
return a.y<b.y;
} pii Closest_Pair(int l,int r) //返回排序后点的编号
{
if(l==r || l+==r)return pii(l,r); //只有一个点或者两个点
double d,d1,d2;
int i,j,k,mid=(l+r)/;
//左右两边最小距离点的编号
pii pn1=Closest_Pair(l,mid);
pii pn2=Closest_Pair(mid+,r);
//左右两遍的最小距离
d1=(pn1.first==pn1.second?OO:dist(nod[pn1.first],nod[pn1.second]));
d2=(pn2.first==pn2.second?OO:dist(nod[pn2.first],nod[pn2.second]));
pii ret;
d=Min(d1,d2);
ret=d1<d2?pn1:pn2;
//找出在mid-d,mid+d之间的点
for(i=l,k=;i<=r;i++){
if(fabs(nod[mid].x-nod[i].x)<=d){
temp[k++]=nod[i];
}
}
//合并两边,求最小距离
sort(temp,temp+k,cmpy);
for(i=;i<k;i++){
for(j=i+;j<k && fabs(temp[j].y-temp[i].y)<d;j++){
if(dist(temp[i],temp[j])<d){
d=dist(temp[i],temp[j]);
ret=make_pair(temp[i].id,temp[j].id);
}
}
} return ret;
} void Init() //初始化点
{
int i;
double x,y;
for(i=;i<n;i++){
scanf("%lf%lf",&x,&y);
nod[i]=Node(x,y,i);
}
sort(nod,nod+n,cmpxy);
for(i=;i<n;i++)nod[i].id=i; //排序后节点编号
} int main(){
// freopen("in.txt","r",stdin);
int T,i,j;
while(~scanf("%d",&n) && n)
{
Init();
pii ans=Closest_Pair(,n-); printf("%.2lf\n",dist(nod[ans.first],nod[ans.second])/);
}
return ;
}

HDU-1007 Quoit Design 平面最近点对的更多相关文章

  1. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  2. HDU 1007 Quoit Design | 平面分治

    暂鸽 #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #d ...

  3. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  4. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  5. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  7. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDU 1007 Quoit Design

    传送门 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  10. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. discuz云平台报调用远程接口失败的问题分析和解决

    根据网络两篇文章整理 问题描述:当开通或关闭某个云平台服务的时候,报如下错误信息:调用远程接口失败.请检查您的服务器是否处于内网以及您服务器的防火墙设置. 云平台测试站点的接口文件正常,于是开始在文件 ...

  2. Codeforces Round #240 (Div. 2)(A -- D)

    点我看题目 A. Mashmokh and Lights time limit per test:1 secondmemory limit per test:256 megabytesinput:st ...

  3. hibernate annotation注解 主键ID自增长

    @Id @SequenceGenerator(name="increment") @GeneratedValue(strategy=GenerationType.AUTO, gen ...

  4. 判断浏览器类型-----------navigator.userAgent.indexOf()

    <script language="JavaScript"> <!-- function getOs() { var OsObject = "" ...

  5. 从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构) (转)

    转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到 ...

  6. Mysql DBA 20天速成教程,DBA大纲

    Mysql DBA 20天速成教程 基本知识1.mysql的编译安装2.mysql 第3方存储引擎安装配置方法3.mysql 主流存储引擎(MyISAM/innodb/MEMORY)的特点4.字符串编 ...

  7. mac osx 升级yosemite后java出错的解决

    原文  http://www.cnblogs.com/walkerwang/p/4034152.html

  8. [LOJ 1038] Race to 1 Again

    C - Race to 1 Again Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu D ...

  9. spring-security用户权限认证框架

    大家知道在spring中有一个基于acegi开发的spring-security的权限管理模块,它是一个轻量级框架. SpringSecurity能以声明的方式来保护Web应用程序的URL访问,只需简 ...

  10. 【持续更新】D3 的学习资料

    经常有朋友问哪里有关于 D3 的比较好的学习资料,现整理成此文.以后找到更多更好的,会不断更新本文. 我是在2013年开始接触 D3 的,当时就觉得这个工具很好玩.至今,学习资料整理了不少.如果有朋友 ...