Codeforces Gym 100803D Space Golf 物理题
Space Golf
题目连接:
http://codeforces.com/gym/100803/attachments
Description
You surely have never heard of this new planet surface exploration scheme, as it is being carried
out in a project with utmost secrecy. The scheme is expected to cut costs of conventional rovertype
mobile explorers considerably, using projected-type equipment nicknamed “observation
bullets”.
Bullets do not have any active mobile abilities of their own, which is the main reason of their
cost-efficiency. Each of the bullets, after being shot out on a launcher given its initial velocity,
makes a parabolic trajectory until it touches down. It bounces on the surface and makes another
parabolic trajectory. This will be repeated virtually infinitely.
We want each of the bullets to bounce precisely at the respective spot of interest on the planet
surface, adjusting its initial velocity. A variety of sensors in the bullet can gather valuable data
at this instant of bounce, and send them to the observation base. Although this may sound like
a conventional target shooting practice, there are several issues that make the problem more
difficult.
• There may be some obstacles between the launcher and the target spot. The obstacles
stand upright and are very thin that we can ignore their widths. Once the bullet touches
any of the obstacles, we cannot be sure of its trajectory thereafter. So we have to plan
launches to avoid these obstacles.
• Launching the bullet almost vertically in a speed high enough, we can easily make it hit
the target without touching any of the obstacles, but giving a high initial speed is energyconsuming.
Energy is extremely precious in space exploration, and the initial speed of the
bullet should be minimized. Making the bullet bounce a number of times may make the
bullet reach the target with lower initial speed.
• The bullet should bounce, however, no more than a given number of times. Although
the body of the bullet is made strong enough, some of the sensors inside may not stand
repetitive shocks. The allowed numbers of bounces vary on the type of the observation
bullets.
You are summoned engineering assistance to this project to author a smart program that tells
the minimum required initial speed of the bullet to accomplish the mission.
Figure D.1 gives a sketch of a situation, roughly corresponding to the situation of the Sample
Input 4 given below
Input
You can assume the following.
• The atmosphere of the planet is so thin that atmospheric resistance can be ignored.
• The planet is large enough so that its surface can be approximated to be a completely flat
plane.
• The gravity acceleration can be approximated to be constant up to the highest points a
bullet can reach.
These mean that the bullets fly along a perfect parabolic trajectory.
You can also assume the following.
• The surface of the planet and the bullets are made so hard that bounces can be approximated
as elastic collisions. In other words, loss of kinetic energy on bounces can be ignored.
As we can also ignore the atmospheric resistance, the velocity of a bullet immediately after
a bounce is equal to the velocity immediately after its launch.
• The bullets are made compact enough to ignore their sizes.
• The launcher is also built compact enough to ignore its height.
You, a programming genius, may not be an expert in physics. Let us review basics of rigid-body
dynamics.
• The horizontal velocity component of the bullet is kept constant during its flight when
atmospheric resistance is ignored. Thus the horizontal distance from the launcher is proportional
to the time elapsed.
• The vertical velocity component vy is gradually decelerated by the gravity. With the
gravity acceleration of g, the following differential equation holds during the flight.
dvy
Solving this with the initial conditions of vy = viy and y = 0 when t = 0, we obtain the
following.
The equation (4) tells that the bullet reaches the ground again when t = 2viy/g. Thus, the
distance of the point of the bounce from the launcher is 2vixviy/g. In other words, to make
the bullet fly the distance of l, the two components of the initial velocity should satisfy
2vixviy = lg.
• Eliminating the parameter t from the simultaneous equations above, we obtain the following
equation that describes the parabolic trajectory of the bullet.
For ease of computation, a special unit system is used in this project, according to which the
gravity acceleration g of the planet is exactly 1.0.
Output
The input consists of a single test case with the following format.
d n b
p1 h1
p2 h2
.
.
.
pn hn
The first line contains three integers, d, n, and b. Here, d is the distance from the launcher
to the target spot (1 ≤ d ≤ 10000), n is the number of obstacles (1 ≤ n ≤ 10), and b is the
maximum number of bounces allowed, not including the bounce at the target spot (0 ≤ b ≤ 15).
Each of the following n lines has two integers. In the k-th line, pk is the position of the k-th
obstacle, its distance from the launcher, and hk is its height from the ground level. You can
assume that 0 < p1, pk < pk+1 for k = 1, . . . , n − 1, and pn < d. You can also assume that
1 ≤ hk ≤ 10000 for k = 1, . . . , n.
Sample Input
343 3 2
56 42
190 27
286 34
Sample Output
11.08710
Hint
题意
你需要从(0,0)点扔出去一个球,恰好扔在(d,0)
而且这个球不能碰到任何一个障碍,最多在地上弹b次
问你速度最小为多少
题解:
我们可以物理一点去想,这个抛物线一定是靠着某一个障碍或者45°扔出去的
所以我们直接暴力枚举靠在哪一个障碍就好了
我们处理的时候,可以优化一下,可以直接把抛物线变成关于y轴对称的抛物线,然后把障碍都移到那儿
然后再判断
注意:精度有毒
代码
#include<bits/stdc++.h>
using namespace std;
double d;
int n,b;
double p[20],h[20];
double eps = 1e-6;
double solve(int t)
{
double dis = d/t;
double p2[20],h2[20];
for(int i=1;i<=n;i++)
{
p2[i]=p[i];
while(p2[i]>=dis)
p2[i]-=dis;
p2[i]-=dis/2.0;
h2[i]=h[i];
}
double ans = 1e9;
for(int i=1;i<=n;i++)
{
double A = h2[i]/(p2[i]*p2[i]-dis*dis/4);
double C = -A*dis*dis/4.0;
double vy = sqrt(2*C);
double vx = dis/(2*vy);
double v = sqrt(vx*vx+vy*vy);
int flag = 1;
for(int j=1;j<=n;j++)
{
double H = A * p2[j] * p2[j] + C;
if(h2[j]-H>eps)
{
flag = 0;
break;
}
}
if(flag)
{
ans = min(ans,v);
}
}
double v = sqrt(dis);
double C = dis/4;
double A = -1/dis;
int flag = 1;
for(int i=1;i<=n;i++)
{
double H = A * p2[i] * p2[i] + C;
if(h2[i]-H>eps)
{
flag = 0;
break;
}
}
if(flag)
ans = min(ans,v);
//cout<<ans<<" "<<v<<endl;
return ans;
}
int main()
{
scanf("%lf%d%d",&d,&n,&b);
b++;
for(int i=1;i<=n;i++)
scanf("%lf%lf",&p[i],&h[i]);
double v = 1e9;
for(int i=1;i<=b;i++)
v=min(v,solve(i));
printf("%.10f\n",v);
}
Codeforces Gym 100803D Space Golf 物理题的更多相关文章
- Codeforces GYM 100114 B. Island 水题
B. Island Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Description O ...
- Codeforces Gym 100431D Bubble Sort 水题乱搞
原题链接:http://codeforces.com/gym/100431/attachments/download/2421/20092010-winter-petrozavodsk-camp-an ...
- Codeforces gym 100685 C. Cinderella 水题
C. CinderellaTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/C ...
- Space Golf~物理题目
Description You surely have never heard of this new planet surface exploration scheme, as it is bein ...
- Codeforces Gym 100286G Giant Screen 水题
Problem G.Giant ScreenTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/con ...
- codeforces gym 100345I Segment Transformations [想法题]
题意简述 给定一个由A C G T四个字母组成的密码锁(每拨动一次 A变C C变G G变T T变A) 密码锁有n位 规定每次操作可以选取连续的一段拨动1~3次 问最少几次操作可以将初始状态变到末状态 ...
- Codeforces Round #114 (Div. 1) A. Wizards and Trolleybuses 物理题
A. Wizards and Trolleybuses Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- Codeforces Gym 101252D&&floyd判圈算法学习笔记
一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...
- Codeforces gym 101343 J.Husam and the Broken Present 2【状压dp】
2017 JUST Programming Contest 2.0 题目链接:Codeforces gym 101343 J.Husam and the Broken Present 2 J. Hu ...
随机推荐
- 让Fragment监听返回键
Activity可以很容易的得到物理返回键的监听事件,而Fragment却不能.所以使用到了以下的方法. 首先创建一个抽象类BackHandledFragment,该类有一个抽象方法onBackPre ...
- delphi 712 Word 2
//导出Wordprocedure TFrm_Computing.ExportWord(aFileName: string; aFileType: string);var wordApp, WordD ...
- Drupal处理缓存的方式
Drupal的后台数据库中有很多以cache开头的表,这些都是Drupal的缓存数据表. Drupal的缓存机制使用了接口方式,所有的缓存对象都必须实现DrupalCacheInterface接口: ...
- simpletest:一个简单的PHP试工具
1. 下载: http://simpletest.org/ .2. 下载后,只要测试文件中包含如下两个文件,就可以用了 : <?php require_once('simpletest/auto ...
- Http中Cookie和Session介绍
先介绍下B/S系统的工作的完整过程.首先客户端的浏览器发出请求,服务端的webserver接受到请求后,调用相关请求的页面进行处理,处理完后将结果发送给客户端的浏览器进行显示.只能是浏览器向webse ...
- 如何配置仿真器DM8127+SEED-XDS560v2PLUS和连接不上的问题的解决
1 根据配置焊接JTAG电路转接板.我用的是14pin的. 2 安装仿真器驱动.安装完如下图 我安装的时候没有自动装上,第一次显示问号,后来手动的. 3 设置ccs工程 4 最后调试是这个样子 5 查 ...
- 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...
- vs2013下自动注释的运用
1.首先是VAssistX,可以在VS的工具下,拓展和更新里面找到,然后下载安装即可: 以下为大家介绍一下怎么添加函数头注释:随便打开一个C++的工程,找到一个方法,右击函数名,然后依次点击“Refa ...
- int型长度
Ø 基本数据类型 C语言中只有4中基本数据类型——整型.浮点型.指针和聚合类型(如数组和结构等):所有其他类型都是从这4种基本类型的某种变化或组合派生而来. 一.整型家族 整型家族包括char.sh ...
- 【boost】BOOST_LOCAL_FUNCTION体验
c++11里支持使用lambda在函数内定义本地嵌套函数,将一些算法的判断式定义为本地函数可以使代码更加清晰,同时声明和调用靠近也使得更容易维护.遗憾的是公司开发平台任然停留在vs2008,使用boo ...